TY - JOUR
T1 - Deep-sea benthic structures and substrate types influence the distribution of functional groups in the Wallaby-Zenith Fracture Zone (East Indian Ocean)
AU - Niyazi, Yakufu
AU - Bond, Todd
AU - Kolbusz, Jessica L.
AU - Maroni, Paige J.
AU - Stewart, Heather A.
AU - Jamieson, Alan J.
PY - 2024/3/14
Y1 - 2024/3/14
N2 - Three-dimensional deep-sea structures enhance substrate complexity and can shape numerous ecological hotspots that play critical roles in the diversity and distribution of benthic faunal assemblages. The characteristics of these features are not fully understood due to the logistical challenges of exploring at great depths and remote locations. One such deep-sea feature, the Wallaby-Zenith Fracture Zone (WZFZ) located in the East Indian Ocean, was mapped using a full-ocean depth multibeam echosounder system. Additionally, twelve baited landers and five crewed submersible dives were conducted in water depths between 4709 and 6591 m. We use seafloor bathymetry, bathymetric derivatives and video footage from the submersible dives to characterise the benthic structures, substrate types, habitat diversity, and the distribution of associated functional groups of megafauna for the WZFZ. The Benthic Terrain Modeler toolbox was used as an initial semi-automated step to generate benthic structural classes, which were further characterized through the inclusion of bottom salinity and temperature data collected by the scientific landers and integrated with the observations of seafloor substrate from the submersible video footage. This resulted in identification of nine benthic habitat classes characterised by unique seafloor morphological structure and substrate texture. A polymetallic nodule field, a possible extension of the previously reported Cape Leeuwen nodule field, was also observed along submersible transects conducted on the slopes of the WZFZ. The distribution and diversity of the functional megafauna groups observed are influenced by the deep-sea benthic habitats, defined by seafloor structures and substrate heterogeneity, especially the presence of hard substrates such as outcropping bedrock and polymetallic nodules within the WZFZ.
AB - Three-dimensional deep-sea structures enhance substrate complexity and can shape numerous ecological hotspots that play critical roles in the diversity and distribution of benthic faunal assemblages. The characteristics of these features are not fully understood due to the logistical challenges of exploring at great depths and remote locations. One such deep-sea feature, the Wallaby-Zenith Fracture Zone (WZFZ) located in the East Indian Ocean, was mapped using a full-ocean depth multibeam echosounder system. Additionally, twelve baited landers and five crewed submersible dives were conducted in water depths between 4709 and 6591 m. We use seafloor bathymetry, bathymetric derivatives and video footage from the submersible dives to characterise the benthic structures, substrate types, habitat diversity, and the distribution of associated functional groups of megafauna for the WZFZ. The Benthic Terrain Modeler toolbox was used as an initial semi-automated step to generate benthic structural classes, which were further characterized through the inclusion of bottom salinity and temperature data collected by the scientific landers and integrated with the observations of seafloor substrate from the submersible video footage. This resulted in identification of nine benthic habitat classes characterised by unique seafloor morphological structure and substrate texture. A polymetallic nodule field, a possible extension of the previously reported Cape Leeuwen nodule field, was also observed along submersible transects conducted on the slopes of the WZFZ. The distribution and diversity of the functional megafauna groups observed are influenced by the deep-sea benthic habitats, defined by seafloor structures and substrate heterogeneity, especially the presence of hard substrates such as outcropping bedrock and polymetallic nodules within the WZFZ.
KW - Deep-sea habitat
KW - Fauna assemblage
KW - Indian Ocean
KW - Polymetallic nodules
KW - Wallaby-Zenith fracture zone
UR - http://www.scopus.com/inward/record.url?scp=85187785269&partnerID=8YFLogxK
U2 - 10.1016/j.dsr.2024.104268
DO - 10.1016/j.dsr.2024.104268
M3 - Article
AN - SCOPUS:85187785269
SN - 0967-0637
VL - 206
JO - Deep-Sea Research Part I: Oceanographic Research Papers
JF - Deep-Sea Research Part I: Oceanographic Research Papers
M1 - 104268
ER -