Deep Fusion Net for Coral Classification in Fluorescence and Reflectance Images

Uzair Nadeem, Mohammed Bennamoun, Ferdous Sohel, Roberto Togneri

Research output: Chapter in Book/Conference paperConference paperpeer-review

5 Citations (Scopus)

Abstract

Coral reefs are vital for marine ecosystem and fishing industry. Automatic classification of corals is essential for the preservation and study of coral reefs. However, significant intra-class variations and inter-class similarity among coral genera, as well as the challenges of underwater illumination present a great hindrance for the automatic classification. We propose an end-to-end trainable Deep Fusion Net for the classification of corals from two types of images. The network takes two simultaneous inputs of reflectance and fluorescence images. It is composed of three branches: Reflectance, Fluorescence and Integration. The branches are first trained individually and then fused together. Finally, the Deep Fusion Net is trained end-to-end for the classification of different coral genera and other non-coral classes. Experiments on the challenging Eliat Fluorescence Coral dataset show that the Deep Fusion net achieves superior classification accuracy compared to other methods.

Original languageEnglish
Title of host publication2019 Digital Image Computing
Subtitle of host publicationTechniques and Applications, DICTA 2019
PublisherIEEE, Institute of Electrical and Electronics Engineers
ISBN (Electronic)9781728138572
DOIs
Publication statusPublished - Dec 2019
Event2019 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2019 - Perth, Australia
Duration: 2 Dec 20194 Dec 2019

Publication series

Name2019 Digital Image Computing: Techniques and Applications, DICTA 2019

Conference

Conference2019 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2019
Country/TerritoryAustralia
CityPerth
Period2/12/194/12/19

Fingerprint

Dive into the research topics of 'Deep Fusion Net for Coral Classification in Fluorescence and Reflectance Images'. Together they form a unique fingerprint.

Cite this