Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions

Weijing Dou, Kai Wang, Shuo Shan, Chenxi Li, Yiye Wang, Kanjian Zhang, Haikun Wei, Victor Sreeram

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Accurate solar irradiance forecasts can make solar power forecasts more reliable, which can help the power grid dispatch reasonably. In practice, Numerical Weather Prediction (NWP) is widely applied in solar irradiance forecasts. In this paper, the statistical NWP Global Horizontal Irradiance (GHI) error analysis shows that the characteristics of NWP GHI error vary obviously under different weather conditions. However, existing correction methods are not designed contrapuntally for different weather conditions, resulting in poor correction performance. To solve this problem, a hybrid method is proposed to get day-ahead correction results for NWP GHI. Specifically, the hybrid method consists of three key parts, including Deep Clustering (DC), Variational Mode Decomposition (VMD), and an Encoder–Decoder based Correction model (EDC). DC is used to categorize the historical samples into three clusters, the input of which is the multi-dimensional information series containing observed data and NWP data. After a feature selection by VMD, the correction models are trained on each cluster respectively. The performance of the proposed model is evaluated with a public dataset and an actual field dataset, and the results demonstrate that the accuracy has been effectively improved by the proposed method compared with other models. In addition, we find that adopting VMD is effective in improving the correction accuracy, and the root mean square error is reduced by 5.70% and 9.32% compared with models without it.

Original languageEnglish
Article number123239
JournalApplied Energy
Volume365
DOIs
Publication statusPublished - 1 Jul 2024

Fingerprint

Dive into the research topics of 'Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions'. Together they form a unique fingerprint.

Cite this