TY - JOUR
T1 - Cultured rat neuronal and glial cells entrapped within hydrogel polymer matrices: a potential tool for neural tissue replacement
AU - Woerly, S.
AU - Plant, G.W.
AU - Harvey, Alan
PY - 1996
Y1 - 1996
N2 - Cultured Schwann cells, neonatal astrocytes or cells dissociated from embryonic cerebral hemispheres were dispersed within poly-[N-(2-hydroxypropyl)-methacrylamide]-based hydrogel matrices by gel entrapment and maintained in vitro for 1-6 days. Glial cells were pre-labelled with Hoechst 33342. Cell differentiation and viability were studied by immunocytochemistry. Up to 15% of Schwann cells initially entrapped within the polymer matrices were immunopositive for the low affinity nerve growth factor receptor, S100, glial fibrillary acidic protein (GFAP) and laminin; up to 10% of pre-labelled astrocytes were immunopositive for GFAP and laminin. Embryonic neurons displayed immunostaining for neurofilaments. Hydrogels containing entrapped Schwann cells were implanted into the rat neocortex. These polymers supported cellular and axonal ingrowth within parts of the polymer matrix.
AB - Cultured Schwann cells, neonatal astrocytes or cells dissociated from embryonic cerebral hemispheres were dispersed within poly-[N-(2-hydroxypropyl)-methacrylamide]-based hydrogel matrices by gel entrapment and maintained in vitro for 1-6 days. Glial cells were pre-labelled with Hoechst 33342. Cell differentiation and viability were studied by immunocytochemistry. Up to 15% of Schwann cells initially entrapped within the polymer matrices were immunopositive for the low affinity nerve growth factor receptor, S100, glial fibrillary acidic protein (GFAP) and laminin; up to 10% of pre-labelled astrocytes were immunopositive for GFAP and laminin. Embryonic neurons displayed immunostaining for neurofilaments. Hydrogels containing entrapped Schwann cells were implanted into the rat neocortex. These polymers supported cellular and axonal ingrowth within parts of the polymer matrix.
U2 - 10.1016/0304-3940(96)12349-1
DO - 10.1016/0304-3940(96)12349-1
M3 - Article
VL - 205
SP - 197
EP - 201
JO - Neuroscience Letters
JF - Neuroscience Letters
ER -