TY - JOUR
T1 - Cross-Conjugated Systems Based on An (E)-Hexa-3-en-1,5-diyne-3,4-diyl Skeleton: Spectroscopic and Spectroelectrochemical Investigations
AU - Gluyas, Josef
AU - Manici, V.
AU - Gückel, S.
AU - Vincent, K.B.
AU - Yufit, D.S.
AU - Howard, J.A.K.
AU - Skelton, Brian
AU - Beeby, A.
AU - Kaupp, M.
AU - Low, Paul
PY - 2015/11/20
Y1 - 2015/11/20
N2 - © 2015 American Chemical Society. A series of cross-conjugated compounds based on an (E)-4,4′-(hexa-3-en-1,5-diyne-3,4-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) skeleton (1-6) have been synthesized. The linear optical absorption properties can be tuned by modification of the substituents at the 1 and 5 positions of the hexa-3-en-1,5-diynyl backbone (1: Si(CH(CH3)2)3, 2: C6H4C≡CSi(CH3)3, 3: C6H4COOCH3, 4: C6H4CF3, 5: C6H4C≡N, 6: C6H4C≡CC5H4N), although attempts to introduce electron-donating (C6H4CH3, C6H4OCH3, C6H4Si(CH3)3) substituents at these positions were hampered by the ensuing decreased stability of the compounds. Spectroelectrochemical investigations of selected examples, supported by DFT-based computational studies, have shown that one- and two-electron oxidation of the 1,2-bis(triarylamine)ethene fragment also results in electronic changes to the perpendicular -system in the hexa-3-en-1,5-diynyl branch of the molecule. These properties suggest that (E)-hexa-3-en-1,5-diynyl-based compounds could have applications in molecular sensing and molecular electronics.
AB - © 2015 American Chemical Society. A series of cross-conjugated compounds based on an (E)-4,4′-(hexa-3-en-1,5-diyne-3,4-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) skeleton (1-6) have been synthesized. The linear optical absorption properties can be tuned by modification of the substituents at the 1 and 5 positions of the hexa-3-en-1,5-diynyl backbone (1: Si(CH(CH3)2)3, 2: C6H4C≡CSi(CH3)3, 3: C6H4COOCH3, 4: C6H4CF3, 5: C6H4C≡N, 6: C6H4C≡CC5H4N), although attempts to introduce electron-donating (C6H4CH3, C6H4OCH3, C6H4Si(CH3)3) substituents at these positions were hampered by the ensuing decreased stability of the compounds. Spectroelectrochemical investigations of selected examples, supported by DFT-based computational studies, have shown that one- and two-electron oxidation of the 1,2-bis(triarylamine)ethene fragment also results in electronic changes to the perpendicular -system in the hexa-3-en-1,5-diynyl branch of the molecule. These properties suggest that (E)-hexa-3-en-1,5-diynyl-based compounds could have applications in molecular sensing and molecular electronics.
U2 - 10.1021/acs.joc.5b02240
DO - 10.1021/acs.joc.5b02240
M3 - Article
SN - 0022-3263
VL - 80
SP - 11501
EP - 11512
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 22
ER -