TY - JOUR
T1 - Critical State Soil Mechanics for Cyclic Liquefaction and Postliquefaction Behavior
T2 - DEM study
AU - Rahman, M. M.
AU - Nguyen, H. B.K.
AU - Fourie, A. B.
AU - Kuhn, M. R.
PY - 2021/2/1
Y1 - 2021/2/1
N2 - Discrete-element method (DEM) simulations of three-dimensional (3D) assemblies of ellipsoid particles were used to evaluate the critical state (CS) for both drained and undrained (constant volume) conditions. A series of conventional triaxial cyclic liquefaction tests with symmetrical cyclic deviatoric stress (σd) with initial q=0 kPa were simulated to develop a relationship between the cyclic stress ratio (CSR=σd/2σ0′) and the number of cycles required for initial liquefaction (NL), where σ0′ is the mean effective normal stress at the end of consolidation. Both cyclic mobility and instability type behaviors were observed depending on the initial void ratio (e0) and σ0′. The micromechanics quantities, i.e., the coordination number (CN), von Mises fabric (FvM), fabric anisotropy intensity (αc), and stress-strain behavior, suggested that cyclic mobility and instability may depend on the phase transformation and instability state, respectively. The cyclic resistance ratio (CRR15), i.e., CSR at NL=15, showed a unique relation with the initial state parameter (ψ0), irrespective of e0 and σ0′. Two series of postliquefaction monotonic simulations with and without reconsolidation exhibited a unique CS, which perfectly matched with the original CS line. The FvM also reached a unique, narrow range at the CS. The postliquefaction settlement during reconsolidation also showed a linear relation with ψ0.
AB - Discrete-element method (DEM) simulations of three-dimensional (3D) assemblies of ellipsoid particles were used to evaluate the critical state (CS) for both drained and undrained (constant volume) conditions. A series of conventional triaxial cyclic liquefaction tests with symmetrical cyclic deviatoric stress (σd) with initial q=0 kPa were simulated to develop a relationship between the cyclic stress ratio (CSR=σd/2σ0′) and the number of cycles required for initial liquefaction (NL), where σ0′ is the mean effective normal stress at the end of consolidation. Both cyclic mobility and instability type behaviors were observed depending on the initial void ratio (e0) and σ0′. The micromechanics quantities, i.e., the coordination number (CN), von Mises fabric (FvM), fabric anisotropy intensity (αc), and stress-strain behavior, suggested that cyclic mobility and instability may depend on the phase transformation and instability state, respectively. The cyclic resistance ratio (CRR15), i.e., CSR at NL=15, showed a unique relation with the initial state parameter (ψ0), irrespective of e0 and σ0′. Two series of postliquefaction monotonic simulations with and without reconsolidation exhibited a unique CS, which perfectly matched with the original CS line. The FvM also reached a unique, narrow range at the CS. The postliquefaction settlement during reconsolidation also showed a linear relation with ψ0.
UR - http://www.scopus.com/inward/record.url?scp=85092439617&partnerID=8YFLogxK
U2 - 10.1061/(ASCE)GT.1943-5606.0002453
DO - 10.1061/(ASCE)GT.1943-5606.0002453
M3 - Article
AN - SCOPUS:85092439617
SN - 1090-0241
VL - 147
JO - Journal of Geotechnical and Geoenvironmental Engineering
JF - Journal of Geotechnical and Geoenvironmental Engineering
IS - 2
M1 - 04020166
ER -