Cracking of Porcelain Coatings Bonded to Metal Substrates of Different Modulus and Hardness

H. Zhao, Xiao Hu, Mark Bush, B.R. Lawn

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

A preceding study of contact damage in a bilayer system consisting of a porcelain coating on a stiff Pd-alloy substrate is here expanded to investigate the role of substrate modulus and hardness. Bilayers are made by fusing the same dental porcelain onto Co-, Pd-, and Au-alloy metal bases. Indentations are made on the porcelain surfaces using spheres of radii 2.38 and 3.98 mm. Critical loads to initiate cone fracture at the top surface of the porcelain and yield in the substrate below the contact are measured as a function of porcelain thickness. Radial cracks form at the lower surface of the coating once the substrate yield is well developed. By virtue of its controlling role in the metal yield process, substrate hardness is revealed to be a key material parameter-substrate modulus plays a secondary role. A simple elasticity-based analysis for predetermining critical loads for a given brittle/plastic bilayer system is presented.
Original languageEnglish
Pages (from-to)1471-1478
JournalJournal of Materials Research
Volume16
Issue number5
DOIs
Publication statusPublished - 2001

Fingerprint

Dive into the research topics of 'Cracking of Porcelain Coatings Bonded to Metal Substrates of Different Modulus and Hardness'. Together they form a unique fingerprint.

Cite this