TY - JOUR
T1 - Cost-effective strategies to mitigate multiple pollutants in an agricultural catchment in North Central Victoria, Australia
AU - Doole, Graeme
AU - Vigiak, O.
AU - Pannell, David
AU - Roberts, A.M.
PY - 2013
Y1 - 2013
N2 - Strategies to reduce phosphorus and sediment yields are identified for two Australian catchments using a nonlinear optimisation model. This provides novel insight into the cost-effective management of dual pollutants of water courses in Australia. A strong degree of complementarity between the two pollutants is highlighted, given the adsorption of phosphorus to sediment that augments the value of gully and streambank management for mitigation. However, the relationship between the two pollutants is asymmetric. A 30 per cent reduction in phosphorus yield achieves a 75 per cent reduction in sediment yield in one catchment, while a 30 per cent reduction in sediment yield achieves only a 12 per cent reduction in phosphorus yield. Sediment abatement costs are low given the efficiency of gully and streambank management. A 30 per cent phosphorus reduction lowers profit by 3-7 per cent, while a 30 per cent sediment reduction lowers profit by around 1 per cent. Land-use optimisation requires spatial heterogeneity in land-use and gully/streambank management responses. Overall, this research demonstrates the need to determine whether one pollutant is more important than another, while recognising the potential that mitigation practices possess for the reduction of multiple emissions during their evaluation. © 2013 Australian Agricultural and Resource Economics Society Inc. and Wiley Publishing Asia Pty Ltd.
AB - Strategies to reduce phosphorus and sediment yields are identified for two Australian catchments using a nonlinear optimisation model. This provides novel insight into the cost-effective management of dual pollutants of water courses in Australia. A strong degree of complementarity between the two pollutants is highlighted, given the adsorption of phosphorus to sediment that augments the value of gully and streambank management for mitigation. However, the relationship between the two pollutants is asymmetric. A 30 per cent reduction in phosphorus yield achieves a 75 per cent reduction in sediment yield in one catchment, while a 30 per cent reduction in sediment yield achieves only a 12 per cent reduction in phosphorus yield. Sediment abatement costs are low given the efficiency of gully and streambank management. A 30 per cent phosphorus reduction lowers profit by 3-7 per cent, while a 30 per cent sediment reduction lowers profit by around 1 per cent. Land-use optimisation requires spatial heterogeneity in land-use and gully/streambank management responses. Overall, this research demonstrates the need to determine whether one pollutant is more important than another, while recognising the potential that mitigation practices possess for the reduction of multiple emissions during their evaluation. © 2013 Australian Agricultural and Resource Economics Society Inc. and Wiley Publishing Asia Pty Ltd.
U2 - 10.1111/1467-8489.12003
DO - 10.1111/1467-8489.12003
M3 - Article
SN - 1364-985X
VL - 57
SP - 441
EP - 460
JO - Australian Journal of Agricultural and Resource Economics
JF - Australian Journal of Agricultural and Resource Economics
IS - 3
ER -