TY - JOUR
T1 - Corrosion protection of steel embedded in cement-stabilised rammed earth
AU - Meek, Alexandra H.
AU - Beckett, Christopher T.S.
AU - Carsana, Maddalena
AU - Ciancio, Daniela
PY - 2018/10/30
Y1 - 2018/10/30
N2 - Cement-stabilised rammed earth (CSRE) reinforced with steel is a modern adaptation of an ancient construction technique, permitting the use of a wider range of structural forms and applications than those used traditionally. However, corrosion behaviour of steel embedded in CSRE is not yet understood, casting doubt on the longevity of these structural solutions. In this paper, we assessed the ability of a range of CSRE mixes stabilised with 10% cement to protect embedded steel against carbonation-induced corrosion by using electrochemical measurements and considering also material alkalinity, carbonation resistance and capillary absorption. Results demonstrated that the pH of the CSRE mixes was sufficiently alkaline to provide the appropriate environment for passivation of steel reinforcement. Based on the experimental results, carbonation would most likely have reached the reinforcement within approximately 5–15 years (50 mm cover) or 30–75 years (150 mm cover), depassivating the reinforcement within the design life span. The findings demonstrated that a corrosion potential of −200 mV SCE indicates conditions of negligible corrosion of steel in CSRE. As behaviour varied little between the four tested soil mixes (of varying granularity), it is reasonable to expect that findings presented here also apply to other soil mixes stabilised with 10% cement.
AB - Cement-stabilised rammed earth (CSRE) reinforced with steel is a modern adaptation of an ancient construction technique, permitting the use of a wider range of structural forms and applications than those used traditionally. However, corrosion behaviour of steel embedded in CSRE is not yet understood, casting doubt on the longevity of these structural solutions. In this paper, we assessed the ability of a range of CSRE mixes stabilised with 10% cement to protect embedded steel against carbonation-induced corrosion by using electrochemical measurements and considering also material alkalinity, carbonation resistance and capillary absorption. Results demonstrated that the pH of the CSRE mixes was sufficiently alkaline to provide the appropriate environment for passivation of steel reinforcement. Based on the experimental results, carbonation would most likely have reached the reinforcement within approximately 5–15 years (50 mm cover) or 30–75 years (150 mm cover), depassivating the reinforcement within the design life span. The findings demonstrated that a corrosion potential of −200 mV SCE indicates conditions of negligible corrosion of steel in CSRE. As behaviour varied little between the four tested soil mixes (of varying granularity), it is reasonable to expect that findings presented here also apply to other soil mixes stabilised with 10% cement.
KW - Capillary absorption
KW - Carbonation
KW - Cement-stabilised
KW - Corrosion potential
KW - Passivation
KW - Rammed earth
KW - Sustainable building
UR - http://www.scopus.com/inward/record.url?scp=85051386034&partnerID=8YFLogxK
U2 - 10.1016/j.conbuildmat.2018.07.210
DO - 10.1016/j.conbuildmat.2018.07.210
M3 - Article
AN - SCOPUS:85051386034
SN - 0950-0618
VL - 187
SP - 942
EP - 953
JO - Construction and Building Materials
JF - Construction and Building Materials
ER -