TY - JOUR
T1 - Contrasting morphology and growth habits of Frutexites in Late Devonian reef complexes of the Canning Basin, northwestern Australia
AU - Champenois, France
AU - George, Annette D.
AU - McNamara, Kenneth J.
AU - Shaw, Jeremy
AU - Cherdantseva, Maria
PY - 2024/1/1
Y1 - 2024/1/1
N2 - Frutexites-like microstructures are described from the exhumed Late Devonian reef complexes of the northern Canning Basin, Western Australia. Several high-resolution imaging techniques, including X-ray microcomputerised tomography, scanning electron microscopy and X-ray fluorescence microscopy, were used to investigate morphology and composition in two samples. Three types of Frutexites-like microstructures (Types I–III) have been identified. Type I, found lining an early marine cement-filled cavity in fore-reef grainstone facies, consists of dendritic structures formed primarily of coccoid bacteria with filamentous bacteria embedded in sheets of amorphous extracellular polymeric substances (EPS). These ferromanganiferous dendrites have laminated to spheroidal textures. Types II and III are from a toe-of-slope hardground. Type II grew in a crypt between two corals, is also dendritic and composed of bacilliform and filamentous bacteria embedded in an amorphous EPS sheet. The opaqueness of these ferriferous dendrites precludes more detailed description of textures. Type III grew as branching columnar microstromatolites and is composed of entwined filaments of Girvanella, Rothpletzella and Wetheredella with Fe-enriched outer walls that generate Frutexites-like microstructures. Types I and II resemble Frutexites sensu stricto as defined by Maslov (Stromatolites, Trudy Instituta geologicheskikh nauk Akademiya nauk SSR, 1960) and are the result of the consecutive growth and permineralisation of biofilms composed of mixed bacterial communities growing in cryptic habitats. Type III superficially resembles Frutexites sensu stricto based on macroscopic field observations, however, detailed microscopic analysis reveals that it is composed of Fe-enriched tubular walls surrounded by Mn-enriched calcite.
AB - Frutexites-like microstructures are described from the exhumed Late Devonian reef complexes of the northern Canning Basin, Western Australia. Several high-resolution imaging techniques, including X-ray microcomputerised tomography, scanning electron microscopy and X-ray fluorescence microscopy, were used to investigate morphology and composition in two samples. Three types of Frutexites-like microstructures (Types I–III) have been identified. Type I, found lining an early marine cement-filled cavity in fore-reef grainstone facies, consists of dendritic structures formed primarily of coccoid bacteria with filamentous bacteria embedded in sheets of amorphous extracellular polymeric substances (EPS). These ferromanganiferous dendrites have laminated to spheroidal textures. Types II and III are from a toe-of-slope hardground. Type II grew in a crypt between two corals, is also dendritic and composed of bacilliform and filamentous bacteria embedded in an amorphous EPS sheet. The opaqueness of these ferriferous dendrites precludes more detailed description of textures. Type III grew as branching columnar microstromatolites and is composed of entwined filaments of Girvanella, Rothpletzella and Wetheredella with Fe-enriched outer walls that generate Frutexites-like microstructures. Types I and II resemble Frutexites sensu stricto as defined by Maslov (Stromatolites, Trudy Instituta geologicheskikh nauk Akademiya nauk SSR, 1960) and are the result of the consecutive growth and permineralisation of biofilms composed of mixed bacterial communities growing in cryptic habitats. Type III superficially resembles Frutexites sensu stricto based on macroscopic field observations, however, detailed microscopic analysis reveals that it is composed of Fe-enriched tubular walls surrounded by Mn-enriched calcite.
KW - calcimicrobes
KW - ferromanganiferous dendrites
KW - Girvanella
KW - high-resolution imaging
KW - Lennard Shelf
KW - permineralised EPS
UR - http://www.scopus.com/inward/record.url?scp=85177172921&partnerID=8YFLogxK
U2 - 10.1111/gbi.12579
DO - 10.1111/gbi.12579
M3 - Article
C2 - 37984450
AN - SCOPUS:85177172921
SN - 1472-4677
VL - 22
JO - Geobiology
JF - Geobiology
IS - 1
M1 - e12579
ER -