Abstract
We use 47 gravitational wave sources from the Third LIGO-Virgo-Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34Me, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0 = 68+12-8 km s-1 Mpc-1 (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0 = 68+8-6 km s-1 Mpc-1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814.
Original language | English |
---|---|
Article number | 76 |
Journal | Astrophysical Journal |
Volume | 949 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Jun 2023 |
Fingerprint
Dive into the research topics of 'Constraints on the Cosmic Expansion History from GWTC-3'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astrophysical Journal, Vol. 949, No. 2, 76, 01.06.2023.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Constraints on the Cosmic Expansion History from GWTC-3
AU - LIGO Scientific Collaboration
AU - Virgo Collaboration
AU - KAGRA Collaboration
AU - Abbott, R.
AU - Abe, H.
AU - Acernese, F.
AU - Ackley, K.
AU - Adhikari, N.
AU - Adhikari, R. X.
AU - Adkins, V. K.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agarwal, D.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Akutsu, T.
AU - Albanesi, S.
AU - Alfaidi, R. A.
AU - Allocca, A.
AU - Altin, P. A.
AU - Amato, A.
AU - Anand, C.
AU - Anand, S.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Ando, M.
AU - Andrade, T.
AU - Andres, N.
AU - Andres-Carcasona, M.
AU - Andric, T.
AU - Angelova, S. V.
AU - Ansoldi, S.
AU - Antelis, J. M.
AU - Antier, S.
AU - Apostolatos, T.
AU - Appavuravther, E. Z.
AU - Appert, S.
AU - Apple, S. K.
AU - Arai, K.
AU - Araya, A.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arene, M.
AU - Aritomi, N.
AU - Arnaud, N.
AU - Arogeti, M.
AU - Aronson, S. M.
AU - Arun, K. G.
AU - Asada, H.
AU - Asali, Y.
AU - Ashton, G.
AU - Aso, Y.
AU - Assiduo, M.
AU - De Souza Melo, S. Assis
AU - Aston, S. M.
AU - Astone, P.
AU - Aubin, F.
AU - AultONeal, K.
AU - Austin, C.
AU - Babak, S.
AU - Badaracco, F.
AU - Bader, M. K.M.
AU - Badger, C.
AU - Bae, S.
AU - Bae, Y.
AU - Baer, A. M.
AU - Bagnasco, S.
AU - Bai, Y.
AU - Baird, J.
AU - Bajpai, R.
AU - Baka, T.
AU - Ball, M.
AU - Ballardin, G.
AU - Ballmer, S. W.
AU - Balsamo, A.
AU - Baltus, G.
AU - Banagiri, S.
AU - Banerjee, B.
AU - Bankar, D.
AU - Barayoga, J. C.
AU - Barbieri, C.
AU - Barbieri, R.
AU - Barish, B. C.
AU - Barker, D.
AU - Barneo, P.
AU - Barone, F.
AU - Barr, B.
AU - Barsotti, L.
AU - Barsuglia, M.
AU - Barta, D.
AU - Bartlett, J.
AU - Barton, M. A.
AU - Bartos, I.
AU - Basak, S.
AU - Bassiri, R.
AU - Basti, A.
AU - Bawaj, M.
AU - Bayley, J. C.
AU - Bazzan, M.
AU - Becher, B. R.
AU - Becsy, B.
AU - Bedakihale, V. M.
AU - Beirnaert, F.
AU - Bejger, M.
AU - Belahcene, I.
AU - Benedetto, V.
AU - Beniwal, D.
AU - Benjamin, M. G.
AU - Bennett, T. F.
AU - Bentley, J. D.
AU - BenYaala, M.
AU - Bera, S.
AU - Berbel, M.
AU - Bergamin, F.
AU - Berger, B. K.
AU - Bernuzzi, S.
AU - Berry, C. P.L.
AU - Bersanetti, D.
AU - Bertolini, A.
AU - Betzwieser, J.
AU - Beveridge, D.
AU - Bhandare, R.
AU - Bhandari, A. V.
AU - Bhardwaj, U.
AU - Bhatt, R.
AU - Bhattacharjee, D.
AU - Bhaumik, S.
AU - Bianchi, A.
AU - Bilenko, I. A.
AU - Billingsley, G.
AU - Bilicki, M.
AU - Bini, S.
AU - Birney, R.
AU - Birnholtz, O.
AU - Biscans, S.
AU - Bischi, M.
AU - Biscoveanu, S.
AU - Bisht, A.
AU - Biswas, B.
AU - Bitossi, M.
AU - Bizouard, M. A.
AU - Blackburn, J. K.
AU - Blair, C. D.
AU - Blair, D. G.
AU - Blair, R. M.
AU - Bobba, F.
AU - Bode, N.
AU - Boer, M.
AU - Bogaert, G.
AU - Boldrini, M.
AU - Bolingbroke, G. N.
AU - Bonavena, L. D.
AU - Bondu, F.
AU - Bonilla, E.
AU - Bonnand, R.
AU - Booker, P.
AU - Boom, B. A.
AU - Bork, R.
AU - Boschi, V.
AU - Bose, N.
AU - Bose, S.
AU - Bossilkov, V.
AU - Boudart, V.
AU - Bouffanais, Y.
AU - Bozzi, A.
AU - Bradaschia, C.
AU - Brady, P. R.
AU - Bramley, A.
AU - Branch, A.
AU - Branchesi, M.
AU - Brau, J. E.
AU - Breschi, M.
AU - Briant, T.
AU - Briggs, J. H.
AU - Brillet, A.
AU - Brinkmann, M.
AU - Brockill, P.
AU - Brooks, A. F.
AU - Brooks, J.
AU - Brown, D. D.
AU - Brunett, S.
AU - Bruno, G.
AU - Bruntz, R.
AU - Bryant, J.
AU - Bucci, F.
AU - Bulik, T.
AU - Bulten, H. J.
AU - Buonanno, A.
AU - Burtnyk, K.
AU - Buscicchio, R.
AU - Buskulic, D.
AU - Buy, C.
AU - Byer, R. L.
AU - Cabourn Davies, G. S.
AU - Cabras, G.
AU - Cabrita, R.
AU - Cadonati, L.
AU - Caesar, M.
AU - Cagnoli, G.
AU - Cahillane, C.
AU - Bustillo, J. Calderon
AU - Callaghan, J. D.
AU - Callister, T. A.
AU - Calloni, E.
AU - Cameron, J.
AU - Camp, J. B.
AU - Canepa, M.
AU - Canevarolo, S.
AU - Cannavacciuolo, M.
AU - Cannon, K. C.
AU - Cao, H.
AU - Cao, Z.
AU - Capocasa, E.
AU - Capote, E.
AU - Carapella, G.
AU - Carbognani, F.
AU - Carlassara, M.
AU - Carlin, J. B.
AU - Carney, M. F.
AU - Carpinelli, M.
AU - Carrillo, G.
AU - Carullo, G.
AU - Carver, T. L.
AU - Diaz, J. Casanueva
AU - Casentini, C.
AU - Castaldi, G.
AU - Chatterjee, C.
AU - Chen, X.
AU - Choudhary, R. K.
AU - Chu, Q.
AU - Coward, D. M.
AU - Howell, E.
AU - JaberianHamedan, V.
AU - Jones, A. W.
AU - Ju, L.
AU - Kaur, T.
AU - Kovalam, M.
AU - Liu, J.
AU - McCann, J. J.
AU - Neil, B. F.
AU - Page, M. A.
AU - Panther, F. H.
AU - Satari, H.
AU - Slaven-Blair, T. J.
AU - Wen, L.
N1 - Funding Information: This material is based upon work supported by NSF's LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d’Innovació Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union–European Regional Development Fund, Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek–Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. Funding Information: This material is based upon work supported by NSF's LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d'Innovació Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union-European Regional Development Fund, Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO), Belgium, the Paris Ile-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTPSAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361, and JP17H06364, JSPS Core-to- Core Program A. Advanced Research Networks, JSPS Grantin- Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC), and the Ministry of Science and Technology (MoST) in Taiwan under grants including ASCDA- 105-M06, Advanced Technology Center (ATC) of NAOJ, Mechanical Engineering Center of KEK. We would like to thank all of the essential workers who put their health at risk during the COVID-19 pandemic, without whom we would not have been able to complete this work. Funding Information: This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361, and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC), and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, Mechanical Engineering Center of KEK. Publisher Copyright: © 2023. The Author(s).
PY - 2023/6/1
Y1 - 2023/6/1
N2 - We use 47 gravitational wave sources from the Third LIGO-Virgo-Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34Me, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0 = 68+12-8 km s-1 Mpc-1 (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0 = 68+8-6 km s-1 Mpc-1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814.
AB - We use 47 gravitational wave sources from the Third LIGO-Virgo-Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34Me, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0 = 68+12-8 km s-1 Mpc-1 (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0 = 68+8-6 km s-1 Mpc-1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814.
KW - Gravitational wave astronomy
KW - Gravitational wave sources
KW - Gravitational waves
UR - http://www.scopus.com/inward/record.url?scp=85163895637&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac74bb
DO - 10.3847/1538-4357/ac74bb
M3 - Article
AN - SCOPUS:85163895637
SN - 0004-637X
VL - 949
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 76
ER -