Constraining the p-Mode-g-Mode Tidal Instability with GW170817

LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=0.03-0.58+0.70 (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃50% probability of obtaining similar lnB!pgpg even when p-g effects are absent. We find that the p-g amplitude for 1.4 MâŠneutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-Tenth this maximum and p-g saturation frequency ∼70 Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest a103 modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates a1051 erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.

Original languageEnglish
Article number061104
JournalPhysical Review Letters
Volume122
Issue number6
DOIs
Publication statusPublished - 13 Feb 2019

Fingerprint

gravitational waves
stars
saturation
neutron stars
waveforms
energy transfer
orbits
energy

Cite this

LIGO Scientific Collaboration and Virgo Collaboration. / Constraining the p-Mode-g-Mode Tidal Instability with GW170817. In: Physical Review Letters. 2019 ; Vol. 122, No. 6.
@article{d820c30da2e34b0d8d6a7523d83ab5bf,
title = "Constraining the p-Mode-g-Mode Tidal Instability with GW170817",
abstract = "We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=0.03-0.58+0.70 (maximum a posteriori and 90{\%} credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃50{\%} probability of obtaining similar lnB!pgpg even when p-g effects are absent. We find that the p-g amplitude for 1.4 M{\^a}Šneutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-Tenth this maximum and p-g saturation frequency ∼70 Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest a103 modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates a1051 erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.",
author = "{LIGO Scientific Collaboration and Virgo Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and B. Agarwal and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and B. Allen and G. Allen and A. Allocca and Aloy, {M. A.} and Altin, {P. A.} and A. Amato and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and Angelova, {S. V.} and S. Antier and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and M. Ar{\`e}ne and N. Arnaud and Arun, {K. G.} and S. Ascenzi and G. Ashton and M. Ast and Aston, {S. M.} and P. Astone and Atallah, {D. V.} and F. Aubin and P. Aufmuth and C. Aulbert and K. Aultoneal and C. Austin and A. Avila-Alvarez and S. Babak and P. Bacon and F. Badaracco and Bader, {M. K.M.} and S. Bae and Baker, {P. T.} and F. Baldaccini and G. Ballardin and Ballmer, {S. W.} and S. Banagiri and Barayoga, {J. C.} and Barclay, {S. E.} and Barish, {B. C.} and D. Barker and K. Barkett and S. Barnum and F. Barone and B. Barr and L. Barsotti and M. Barsuglia and D. Barta and J. Bartlett and I. Bartos and R. Bassiri and A. Basti and Batch, {J. C.} and M. Bawaj and Bayley, {J. C.} and M. Bazzan and B. B{\'e}csy and C. Beer and M. Bejger and I. Belahcene and Bell, {A. S.} and D. Beniwal and M. Bensch and Berger, {B. K.} and G. Bergmann and S. Bernuzzi and Bero, {J. J.} and Berry, {C. P.L.} and D. Bersanetti and A. Bertolini and J. Betzwieser and R. Bhandare and Bilenko, {I. A.} and Bilgili, {S. A.} and G. Billingsley and Billman, {C. R.} and J. Birch and R. Birney and O. Birnholtz and S. Biscans and S. Biscoveanu and A. Bisht and M. Bitossi and Bizouard, {M. A.} and Blackburn, {J. K.} and J. Blackman and Blair, {C. D.} and Blair, {D. G.} and Blair, {R. M.} and S. Bloemen and O. Bock and N. Bode and M. Boer and Y. Boetzel and G. Bogaert and A. Bohe and F. Bondu and E. Bonilla and R. Bonnand and P. Booker and Boom, {B. A.} and Booth, {C. D.} and R. Bork and V. Boschi and S. Bose and K. Bossie and V. Bossilkov and J. Bosveld and Y. Bouffanais and A. Bozzi and C. Bradaschia and Brady, {P. R.} and A. Bramley and M. Branchesi and Brau, {J. E.} and T. Briant and F. Brighenti and A. Brillet and M. Brinkmann and V. Brisson and P. Brockill and Brooks, {A. F.} and Brown, {D. D.} and S. Brunett and Buchanan, {C. C.} and A. Buikema and T. Bulik and Bulten, {H. J.} and A. Buonanno and D. Buskulic and C. Buy and Byer, {R. L.} and M. Cabero and L. Cadonati and G. Cagnoli and C. Cahillane and {Calder{\'o}n Bustillo}, J. and Callister, {T. A.} and E. Calloni and Camp, {J. B.} and M. Canepa and P. Canizares and Cannon, {K. C.} and H. Cao and J. Cao and Capano, {C. D.} and E. Capocasa and F. Carbognani and S. Caride and Carney, {M. F.} and {Casanueva Diaz}, J. and C. Casentini and S. Caudill and M. Cavagli{\`a} and F. Cavalier and R. Cavalieri and G. Cella and Cepeda, {C. B.} and P. Cerd{\'a}-Dur{\'a}n and G. Cerretani and E. Cesarini and O. Chaibi and Chamberlin, {S. J.} and M. Chan and S. Chao and P. Charlton and E. Chase and E. Chassande-Mottin and D. Chatterjee and Katerina Chatziioannou and Cheeseboro, {B. D.} and Chen, {H. Y.} and X. Chen and Y. Chen and Cheng, {H. P.} and Chia, {H. Y.} and A. Chincarini and A. Chiummo and T. Chmiel and Cho, {H. S.} and M. Cho and Chow, {J. H.} and N. Christensen and Q. Chu and Chua, {A. J.K.} and S. Chua and Chung, {K. W.} and S. Chung and G. Ciani and Ciobanu, {A. A.} and R. Ciolfi and F. Cipriano and Cirelli, {C. E.} and A. Cirone and F. Clara and Clark, {J. A.} and P. Clearwater and F. Cleva and C. Cocchieri and E. Coccia and Cohadon, {P. F.} and D. Cohen and A. Colla and Collette, {C. G.} and C. Collins and Cominsky, {L. R.} and M. Constancio and L. Conti and Cooper, {S. J.} and P. Corban and Corbitt, {T. R.} and I. Cordero-Carri{\'o}n and Corley, {K. R.} and N. Cornish and A. Corsi and S. Cortese and Costa, {C. A.} and R. Cotesta and Coward, {D. M.} and Danilishin, {S. L.} and Howell, {E. J.} and McCann, {J. J.} and Page, {M. A.} and Slaven-Blair, {T. J.} and {Van Heijningen}, {J. V.} and J. Zhang and C. Zhao",
year = "2019",
month = "2",
day = "13",
doi = "10.1103/PhysRevLett.122.061104",
language = "English",
volume = "122",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "6",

}

LIGO Scientific Collaboration and Virgo Collaboration 2019, 'Constraining the p-Mode-g-Mode Tidal Instability with GW170817' Physical Review Letters, vol. 122, no. 6, 061104. https://doi.org/10.1103/PhysRevLett.122.061104

Constraining the p-Mode-g-Mode Tidal Instability with GW170817. / LIGO Scientific Collaboration and Virgo Collaboration.

In: Physical Review Letters, Vol. 122, No. 6, 061104, 13.02.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Constraining the p-Mode-g-Mode Tidal Instability with GW170817

AU - LIGO Scientific Collaboration and Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agarwal, B.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, B.

AU - Allen, G.

AU - Allocca, A.

AU - Aloy, M. A.

AU - Altin, P. A.

AU - Amato, A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Ast, M.

AU - Aston, S. M.

AU - Astone, P.

AU - Atallah, D. V.

AU - Aubin, F.

AU - Aufmuth, P.

AU - Aulbert, C.

AU - Aultoneal, K.

AU - Austin, C.

AU - Avila-Alvarez, A.

AU - Babak, S.

AU - Bacon, P.

AU - Badaracco, F.

AU - Bader, M. K.M.

AU - Bae, S.

AU - Baker, P. T.

AU - Baldaccini, F.

AU - Ballardin, G.

AU - Ballmer, S. W.

AU - Banagiri, S.

AU - Barayoga, J. C.

AU - Barclay, S. E.

AU - Barish, B. C.

AU - Barker, D.

AU - Barkett, K.

AU - Barnum, S.

AU - Barone, F.

AU - Barr, B.

AU - Barsotti, L.

AU - Barsuglia, M.

AU - Barta, D.

AU - Bartlett, J.

AU - Bartos, I.

AU - Bassiri, R.

AU - Basti, A.

AU - Batch, J. C.

AU - Bawaj, M.

AU - Bayley, J. C.

AU - Bazzan, M.

AU - Bécsy, B.

AU - Beer, C.

AU - Bejger, M.

AU - Belahcene, I.

AU - Bell, A. S.

AU - Beniwal, D.

AU - Bensch, M.

AU - Berger, B. K.

AU - Bergmann, G.

AU - Bernuzzi, S.

AU - Bero, J. J.

AU - Berry, C. P.L.

AU - Bersanetti, D.

AU - Bertolini, A.

AU - Betzwieser, J.

AU - Bhandare, R.

AU - Bilenko, I. A.

AU - Bilgili, S. A.

AU - Billingsley, G.

AU - Billman, C. R.

AU - Birch, J.

AU - Birney, R.

AU - Birnholtz, O.

AU - Biscans, S.

AU - Biscoveanu, S.

AU - Bisht, A.

AU - Bitossi, M.

AU - Bizouard, M. A.

AU - Blackburn, J. K.

AU - Blackman, J.

AU - Blair, C. D.

AU - Blair, D. G.

AU - Blair, R. M.

AU - Bloemen, S.

AU - Bock, O.

AU - Bode, N.

AU - Boer, M.

AU - Boetzel, Y.

AU - Bogaert, G.

AU - Bohe, A.

AU - Bondu, F.

AU - Bonilla, E.

AU - Bonnand, R.

AU - Booker, P.

AU - Boom, B. A.

AU - Booth, C. D.

AU - Bork, R.

AU - Boschi, V.

AU - Bose, S.

AU - Bossie, K.

AU - Bossilkov, V.

AU - Bosveld, J.

AU - Bouffanais, Y.

AU - Bozzi, A.

AU - Bradaschia, C.

AU - Brady, P. R.

AU - Bramley, A.

AU - Branchesi, M.

AU - Brau, J. E.

AU - Briant, T.

AU - Brighenti, F.

AU - Brillet, A.

AU - Brinkmann, M.

AU - Brisson, V.

AU - Brockill, P.

AU - Brooks, A. F.

AU - Brown, D. D.

AU - Brunett, S.

AU - Buchanan, C. C.

AU - Buikema, A.

AU - Bulik, T.

AU - Bulten, H. J.

AU - Buonanno, A.

AU - Buskulic, D.

AU - Buy, C.

AU - Byer, R. L.

AU - Cabero, M.

AU - Cadonati, L.

AU - Cagnoli, G.

AU - Cahillane, C.

AU - Calderón Bustillo, J.

AU - Callister, T. A.

AU - Calloni, E.

AU - Camp, J. B.

AU - Canepa, M.

AU - Canizares, P.

AU - Cannon, K. C.

AU - Cao, H.

AU - Cao, J.

AU - Capano, C. D.

AU - Capocasa, E.

AU - Carbognani, F.

AU - Caride, S.

AU - Carney, M. F.

AU - Casanueva Diaz, J.

AU - Casentini, C.

AU - Caudill, S.

AU - Cavaglià, M.

AU - Cavalier, F.

AU - Cavalieri, R.

AU - Cella, G.

AU - Cepeda, C. B.

AU - Cerdá-Durán, P.

AU - Cerretani, G.

AU - Cesarini, E.

AU - Chaibi, O.

AU - Chamberlin, S. J.

AU - Chan, M.

AU - Chao, S.

AU - Charlton, P.

AU - Chase, E.

AU - Chassande-Mottin, E.

AU - Chatterjee, D.

AU - Chatziioannou, Katerina

AU - Cheeseboro, B. D.

AU - Chen, H. Y.

AU - Chen, X.

AU - Chen, Y.

AU - Cheng, H. P.

AU - Chia, H. Y.

AU - Chincarini, A.

AU - Chiummo, A.

AU - Chmiel, T.

AU - Cho, H. S.

AU - Cho, M.

AU - Chow, J. H.

AU - Christensen, N.

AU - Chu, Q.

AU - Chua, A. J.K.

AU - Chua, S.

AU - Chung, K. W.

AU - Chung, S.

AU - Ciani, G.

AU - Ciobanu, A. A.

AU - Ciolfi, R.

AU - Cipriano, F.

AU - Cirelli, C. E.

AU - Cirone, A.

AU - Clara, F.

AU - Clark, J. A.

AU - Clearwater, P.

AU - Cleva, F.

AU - Cocchieri, C.

AU - Coccia, E.

AU - Cohadon, P. F.

AU - Cohen, D.

AU - Colla, A.

AU - Collette, C. G.

AU - Collins, C.

AU - Cominsky, L. R.

AU - Constancio, M.

AU - Conti, L.

AU - Cooper, S. J.

AU - Corban, P.

AU - Corbitt, T. R.

AU - Cordero-Carrión, I.

AU - Corley, K. R.

AU - Cornish, N.

AU - Corsi, A.

AU - Cortese, S.

AU - Costa, C. A.

AU - Cotesta, R.

AU - Coward, D. M.

AU - Danilishin, S. L.

AU - Howell, E. J.

AU - McCann, J. J.

AU - Page, M. A.

AU - Slaven-Blair, T. J.

AU - Van Heijningen, J. V.

AU - Zhang, J.

AU - Zhao, C.

PY - 2019/2/13

Y1 - 2019/2/13

N2 - We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=0.03-0.58+0.70 (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃50% probability of obtaining similar lnB!pgpg even when p-g effects are absent. We find that the p-g amplitude for 1.4 MâŠneutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-Tenth this maximum and p-g saturation frequency ∼70 Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest a103 modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates a1051 erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.

AB - We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=0.03-0.58+0.70 (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃50% probability of obtaining similar lnB!pgpg even when p-g effects are absent. We find that the p-g amplitude for 1.4 MâŠneutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-Tenth this maximum and p-g saturation frequency ∼70 Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest a103 modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates a1051 erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.

UR - http://www.scopus.com/inward/record.url?scp=85061565461&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.122.061104

DO - 10.1103/PhysRevLett.122.061104

M3 - Article

VL - 122

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 6

M1 - 061104

ER -