TY - JOUR
T1 - Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - I : development of a microstructural model
AU - Taylor, Z.A.
AU - Kirk, Brett
AU - Miller, Karol
PY - 2007
Y1 - 2007
N2 - Current development of a laser scanning confocal arthroscope within our school will enable 3D microscopic imaging of joint tissues in vivo. Such an instrument could be useful, for example, in assessing the microstructural condition of the living tissues without physical biopsy. It is envisaged also that linked to a suitable microstructural constitutive formulation, such imaging could allow non-invasive patient-specific estimation of tissue mechanical performance. Such a procedure could have applications in surgical planning and simulation, and assessment of engineered tissue replacements, where tissue biopsy is unacceptable. In this first of two papers the development of a suitable constitutive framework for generating such estimates is reported. A microstructure-based constitutive formulation for cartilaginous tissues is presented. The model extends existing fibre composite-type models and accounts for strain-rate sensitivity of the tissue mechanical response through incorporation of a viscoelastic fibre phase. Importantly, the model is constructed so as to allow direct incorporation of structural data from confocal images. A finite element implementation of the formulation suitable for incorporation within commercial codes is also presented.
AB - Current development of a laser scanning confocal arthroscope within our school will enable 3D microscopic imaging of joint tissues in vivo. Such an instrument could be useful, for example, in assessing the microstructural condition of the living tissues without physical biopsy. It is envisaged also that linked to a suitable microstructural constitutive formulation, such imaging could allow non-invasive patient-specific estimation of tissue mechanical performance. Such a procedure could have applications in surgical planning and simulation, and assessment of engineered tissue replacements, where tissue biopsy is unacceptable. In this first of two papers the development of a suitable constitutive framework for generating such estimates is reported. A microstructure-based constitutive formulation for cartilaginous tissues is presented. The model extends existing fibre composite-type models and accounts for strain-rate sensitivity of the tissue mechanical response through incorporation of a viscoelastic fibre phase. Importantly, the model is constructed so as to allow direct incorporation of structural data from confocal images. A finite element implementation of the formulation suitable for incorporation within commercial codes is also presented.
U2 - 10.1080/10255840701336794
DO - 10.1080/10255840701336794
M3 - Article
C2 - 17671863
SN - 1025-5842
VL - 10
SP - 307
EP - 316
JO - Computer Methods in Biomechanics and Biomedical Engineering
JF - Computer Methods in Biomechanics and Biomedical Engineering
IS - 4
ER -