TY - JOUR
T1 - Cones to model foundation vibrations: incompressible oil and axi-symmetric embedment of arbitrary shape
AU - Wolf, J.P.
AU - Deeks, Andrew
PY - 2004
Y1 - 2004
N2 - The recently streamlined strength-of-materials approach using cones to calculate vibrations of foundations embedded in layered half-spaces and full-spaces is applied to incompressible and nearly-incompressible soil and to axi-symmetric embedments of arbitrary shape. For incompressible soil the axial-wave velocity in the cones is limited to twice the shear-wave velocity and a trapped mass for the vertical motion and a trapped mass moment of inertia for the rocking motion moving as a rigid body with the under-most disk of an embedded foundation are introduced. In the case of a fully embedded foundation, a mass and a mass moment of inertia are also assigned to the upper-most disk. For an axi-symmetric embedment of arbitrary shape, the disks have varying radii. No modifications to the formulation are, however, required. For these two extensions the strength-of-materials approach using cones leads to the same sufficient engineering accuracy as is achieved in other more conventional cases. This is demonstrated in a vast study. Thus the same other advantages also apply: physical insight with conceptual clarity, simplicity and sufficient generality.
AB - The recently streamlined strength-of-materials approach using cones to calculate vibrations of foundations embedded in layered half-spaces and full-spaces is applied to incompressible and nearly-incompressible soil and to axi-symmetric embedments of arbitrary shape. For incompressible soil the axial-wave velocity in the cones is limited to twice the shear-wave velocity and a trapped mass for the vertical motion and a trapped mass moment of inertia for the rocking motion moving as a rigid body with the under-most disk of an embedded foundation are introduced. In the case of a fully embedded foundation, a mass and a mass moment of inertia are also assigned to the upper-most disk. For an axi-symmetric embedment of arbitrary shape, the disks have varying radii. No modifications to the formulation are, however, required. For these two extensions the strength-of-materials approach using cones leads to the same sufficient engineering accuracy as is achieved in other more conventional cases. This is demonstrated in a vast study. Thus the same other advantages also apply: physical insight with conceptual clarity, simplicity and sufficient generality.
U2 - 10.1016/j.soildyn.2004.06.016
DO - 10.1016/j.soildyn.2004.06.016
M3 - Article
SN - 0267-7261
VL - 24
SP - 963
EP - 978
JO - Soil Dynamics and Earthquake Engineering
JF - Soil Dynamics and Earthquake Engineering
IS - 12
ER -