TY - JOUR
T1 - Concurrent enhancement of transcriptional activity and specificity of a retinal pigment epithelial cell-preferential promoter
AU - Zhang, D.
AU - Sutanto, E.N.
AU - Rakoczy, Elizabeth
PY - 2004
Y1 - 2004
N2 - PURPOSE: To develop a transgene expression system in retinal pigment epithelial cells with the aim of enhancing the transcriptional activity of a weak RPE-specific/preferential promoter.METHODS: The transgene expression system was established by introducing a chimeric transcriptional activator (GAL4-VP16) and its DNA binding sequence and using truncated human and mouse RPE65 promoters in combination with a luciferase reporter gene. Two groups of expression plasmids were constructed for transfection. The group for co-transfection contained two DNA constructs where the reporter and GAL4-VP16 were separately expressed in pLuc and pGV series. The other group, pLuc-GV series, was prepared as single DNA constructs expressing both the reporter and GAL4-VP16. The transcriptional activities of the DNA constructs were assayed by transfection of human RPE cells (RPE51 and D407) and other cell lines (HEK293, COS-1, Hela, HepG2, and F2000).RESULTS: We found that the transcriptional activity of the human RPE65 promoter was dramatically enhanced 10-13 fold in RPE cells co-transfected with DNA constructs phR65luc and phR65GV when compared to the human RPE65 promoter alone. A comparatively lower, 4-5 fold, increase was observed following transfection with the single DNA construct phR65luc-GV. In RPE cells, when the transcriptional responses to GAL4-VP16 expression were compared between the RPE65 promoter of phR65luc and the minimal promoter of pLuc, the increase in transcriptional activity was about 10 fold higher in phR65luc constructs. Low or non-significant enhancement of promoter activity was observed with these constructs following transfection of the non-RPE cell lines.CONCLUSIONS: Our results indicate that the current transgene expression system dramatically amplifies transcriptional activity of weak and cell-specific/preferential promoters (e.g., the hRPE65 promoter) whilst retaining relative cell specificity.
AB - PURPOSE: To develop a transgene expression system in retinal pigment epithelial cells with the aim of enhancing the transcriptional activity of a weak RPE-specific/preferential promoter.METHODS: The transgene expression system was established by introducing a chimeric transcriptional activator (GAL4-VP16) and its DNA binding sequence and using truncated human and mouse RPE65 promoters in combination with a luciferase reporter gene. Two groups of expression plasmids were constructed for transfection. The group for co-transfection contained two DNA constructs where the reporter and GAL4-VP16 were separately expressed in pLuc and pGV series. The other group, pLuc-GV series, was prepared as single DNA constructs expressing both the reporter and GAL4-VP16. The transcriptional activities of the DNA constructs were assayed by transfection of human RPE cells (RPE51 and D407) and other cell lines (HEK293, COS-1, Hela, HepG2, and F2000).RESULTS: We found that the transcriptional activity of the human RPE65 promoter was dramatically enhanced 10-13 fold in RPE cells co-transfected with DNA constructs phR65luc and phR65GV when compared to the human RPE65 promoter alone. A comparatively lower, 4-5 fold, increase was observed following transfection with the single DNA construct phR65luc-GV. In RPE cells, when the transcriptional responses to GAL4-VP16 expression were compared between the RPE65 promoter of phR65luc and the minimal promoter of pLuc, the increase in transcriptional activity was about 10 fold higher in phR65luc constructs. Low or non-significant enhancement of promoter activity was observed with these constructs following transfection of the non-RPE cell lines.CONCLUSIONS: Our results indicate that the current transgene expression system dramatically amplifies transcriptional activity of weak and cell-specific/preferential promoters (e.g., the hRPE65 promoter) whilst retaining relative cell specificity.
M3 - Article
SN - 1090-0535
VL - 10
SP - 208
EP - 214
JO - Molecular Vision
JF - Molecular Vision
ER -