Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: Implications on wastewater treatment

Priyakshree Borthakur, Meysam Aryafard, Zeenat Zara, Řeha David, Babak Minofar, Manash R. Das, Meththika Vithanage

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Experimental and computational investigations have been conducted in this study to assess the influence of municipal waste pyrolyzed biochar impregnated clay composites on antibiotic removal as a material for wastewater treatment and simultaneous value-addition for waste. The surface potential (zeta potential) of the pristine biochar and composite samples are found to be within the range ~10 to ~ −40 mV in the pH range 2–10. The presence of different inorganic salt solutions influences the electrophoretic mobility of the dispersed phase in a suspension, as well as its zeta potential. In addition of Na+ salt solutions, the Na+ ions undergo electrostatic interaction with the negatively charged biochar samples and form a double layer at the interface of biochar and ionic salt solution. Molecular dynamics simulations have been employed to understand experimental findings, ions adsorption and solute-solvent interactions at the molecular level of two biochar B7 (seven benzene rings, one methoxy, one aldehyde and two hydroxyls groups) and B17 (seventeen benzene rings, one methoxy, two hydroxyls and two carboxylic acid groups) in salts aqueous solutions. The results confirm that hydroxyls and carboxylate groups of biochar are responsible for solute-solvent interactions. Successful removal of tetracycline antibiotics is observed with 26 mg/g maximum adsorption capacity with montmorillonite biochar composite. This study confirms that interactions between amide and hydroxyl groups of tetracycline with hydroxyl and carboxylate groups of biochar play the key role in the adsorption process. The solution pH and presence of different background electrolytes effectively influence the process of solute-solvent interactions as well as adsorption efficacy towards tetracycline adsorption.

Original languageEnglish
Article number111989
JournalJournal of Environmental Management
Volume283
DOIs
Publication statusPublished - 1 Apr 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: Implications on wastewater treatment'. Together they form a unique fingerprint.

Cite this