Comprehensive mapping of long-range interactions reveals folding principles of the human genome

Erez Lieberman-Aiden, Nynke L. Van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael O. Dorschner, Richard Sandstrom, Bradley Bernstein, M. A. Bender, Mark Groudine, Andreas Gnirke, John Stamatoyannopoulos, Leonid A. Mirny, Eric S. Lander, Job Dekker

Research output: Contribution to journalArticlepeer-review

6100 Citations (Scopus)

Abstract

We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

Original languageEnglish
Pages (from-to)289-293
Number of pages5
JournalScience
Volume326
Issue number5950
DOIs
Publication statusPublished - 9 Oct 2009
Externally publishedYes

Fingerprint

Dive into the research topics of 'Comprehensive mapping of long-range interactions reveals folding principles of the human genome'. Together they form a unique fingerprint.

Cite this