Comparison of Si, SiGe and GaAs photovoltaic microcells for power-over-fibre

Steven Hinckley, Steven Richardson, Gary Allwood, Graham Wild

Research output: Chapter in Book/Conference paperConference paperpeer-review

Abstract

Power-over-fibre (POF) has been demonstrated for remotely powering microelectronic devices in hazardous environments [1] and in telecommunication and smart grid applications [2]. The technique can also be used for supplying power to surveillance cameras which reduces their vulnerability to tampering [3]. Ultimately, POF will have significant applications in the development and implementation of all-optical sensor networks. However, there is a limit to the amount of power that can be transmitted via the optical fibre due to processes such as stimulated Brillouin scattering (SBS) [4]. As such, the aim of this study is to optimise the power delivered to different parts of an optical fibre network, in order to minimise the effects of processes such as SBS. This can be achieved by enhancing the performance of the photovoltaic microcell (also called a photovoltaic power converter, PPC) and tailoring it to match the power requirements of sensors or actuators scattering throughout the network.

Original languageEnglish
Title of host publication2018 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2018
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages13-15
Number of pages3
ISBN (Electronic)9781538695241
DOIs
Publication statusPublished - 2 Jul 2018
Event2018 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2018 - Perth, Australia
Duration: 9 Dec 201813 Dec 2018

Publication series

Name2018 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2018

Conference

Conference2018 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2018
Country/TerritoryAustralia
CityPerth
Period9/12/1813/12/18

Fingerprint

Dive into the research topics of 'Comparison of Si, SiGe and GaAs photovoltaic microcells for power-over-fibre'. Together they form a unique fingerprint.

Cite this