Communities and attachment networks associated with primary, secondary and alternative foundation species; A case study of stressed and disturbed stands of southern bull kelp

Mads S. Thomsen, Paul M. South

Research output: Contribution to journalArticle

Abstract

Southern bull kelps (Durvillaea spp., Fucales) are 'primary' foundation species that control community structures and ecosystem functions on temperate wave-exposed rocky reefs. However, these large foundation species are threatened by disturbances and stressors, including invasive species, sedimentation and heatwaves. It is unknown whether 'alternative' foundation species can replace lost southern bull kelps and its associated communities and networks. We compared community structure (by quantifying abundances of different species) and attachment-interaction networks (by quantifying which species were attached to other species) among plots dominated by Durvillaea spp. and plots where Durvillaea spp. were lost either through long-term repeated experimental removals or by recent stress from a marine heatwave. Long-term experimental removal plots were dominated by 'alternative' foundation species, the canopy-forming Cystophora spp. (Fucales), whereas the recent heatwave stressed plots were dominated by the invasive kelp Undaria pinnatifida (Laminariales). A network analysis of attachment interactions showed that communities differed among plots dominated by either Durvillaea spp., Cystophora spp. or U. pinnatifida, with different relationships between the primary, or alternative, foundation species and attached epiphytic 'secondary' foundation species. For example, native Cystophora spp. were more important as hosts for secondary foundation species compared to Durvillaea spp. and U. pinnatifida. Instead, Durvillaea spp. facilitated encrusting algae, which in turn provided habitat for gastropods. We conclude that (a) repeated disturbances and strong stressors can reveal ecological differences between primary and alternative foundation species, (b) analyses of abundances and attachment-networks are supplementary methods to identify linkages between primary, alternative and secondary foundation species, and (c) interspersed habitats dominated by different types of foundation species increase system-level biodiversity by supporting different species-abundance patterns and species-attachment networks.

Original languageEnglish
Article number56
JournalDiversity
Volume11
Issue number4
DOIs
Publication statusPublished - 1 Apr 2019

Fingerprint

Undaria
Kelp
Community Networks
Ecosystem
macroalgae
bulls
case studies
Undaria pinnatifida
Introduced Species
Fucales
Endangered Species
Gastropoda
Biodiversity
algae
community structure
Laminariales
intermediate hosts
habitats
invasive species
linkage (genetics)

Cite this

@article{142a150725c44c459db39293fd0ee426,
title = "Communities and attachment networks associated with primary, secondary and alternative foundation species; A case study of stressed and disturbed stands of southern bull kelp",
abstract = "Southern bull kelps (Durvillaea spp., Fucales) are 'primary' foundation species that control community structures and ecosystem functions on temperate wave-exposed rocky reefs. However, these large foundation species are threatened by disturbances and stressors, including invasive species, sedimentation and heatwaves. It is unknown whether 'alternative' foundation species can replace lost southern bull kelps and its associated communities and networks. We compared community structure (by quantifying abundances of different species) and attachment-interaction networks (by quantifying which species were attached to other species) among plots dominated by Durvillaea spp. and plots where Durvillaea spp. were lost either through long-term repeated experimental removals or by recent stress from a marine heatwave. Long-term experimental removal plots were dominated by 'alternative' foundation species, the canopy-forming Cystophora spp. (Fucales), whereas the recent heatwave stressed plots were dominated by the invasive kelp Undaria pinnatifida (Laminariales). A network analysis of attachment interactions showed that communities differed among plots dominated by either Durvillaea spp., Cystophora spp. or U. pinnatifida, with different relationships between the primary, or alternative, foundation species and attached epiphytic 'secondary' foundation species. For example, native Cystophora spp. were more important as hosts for secondary foundation species compared to Durvillaea spp. and U. pinnatifida. Instead, Durvillaea spp. facilitated encrusting algae, which in turn provided habitat for gastropods. We conclude that (a) repeated disturbances and strong stressors can reveal ecological differences between primary and alternative foundation species, (b) analyses of abundances and attachment-networks are supplementary methods to identify linkages between primary, alternative and secondary foundation species, and (c) interspersed habitats dominated by different types of foundation species increase system-level biodiversity by supporting different species-abundance patterns and species-attachment networks.",
keywords = "Biodiversity, Community analysis, Epibiosis, Facilitation cascade, Foundation species, Habitat cascades, Marine heatwave, Network analysis",
author = "Thomsen, {Mads S.} and South, {Paul M.}",
year = "2019",
month = "4",
day = "1",
doi = "10.3390/d11040056",
language = "English",
volume = "11",
journal = "Diversity",
issn = "1424-2818",
publisher = "MDPI AG",
number = "4",

}

TY - JOUR

T1 - Communities and attachment networks associated with primary, secondary and alternative foundation species; A case study of stressed and disturbed stands of southern bull kelp

AU - Thomsen, Mads S.

AU - South, Paul M.

PY - 2019/4/1

Y1 - 2019/4/1

N2 - Southern bull kelps (Durvillaea spp., Fucales) are 'primary' foundation species that control community structures and ecosystem functions on temperate wave-exposed rocky reefs. However, these large foundation species are threatened by disturbances and stressors, including invasive species, sedimentation and heatwaves. It is unknown whether 'alternative' foundation species can replace lost southern bull kelps and its associated communities and networks. We compared community structure (by quantifying abundances of different species) and attachment-interaction networks (by quantifying which species were attached to other species) among plots dominated by Durvillaea spp. and plots where Durvillaea spp. were lost either through long-term repeated experimental removals or by recent stress from a marine heatwave. Long-term experimental removal plots were dominated by 'alternative' foundation species, the canopy-forming Cystophora spp. (Fucales), whereas the recent heatwave stressed plots were dominated by the invasive kelp Undaria pinnatifida (Laminariales). A network analysis of attachment interactions showed that communities differed among plots dominated by either Durvillaea spp., Cystophora spp. or U. pinnatifida, with different relationships between the primary, or alternative, foundation species and attached epiphytic 'secondary' foundation species. For example, native Cystophora spp. were more important as hosts for secondary foundation species compared to Durvillaea spp. and U. pinnatifida. Instead, Durvillaea spp. facilitated encrusting algae, which in turn provided habitat for gastropods. We conclude that (a) repeated disturbances and strong stressors can reveal ecological differences between primary and alternative foundation species, (b) analyses of abundances and attachment-networks are supplementary methods to identify linkages between primary, alternative and secondary foundation species, and (c) interspersed habitats dominated by different types of foundation species increase system-level biodiversity by supporting different species-abundance patterns and species-attachment networks.

AB - Southern bull kelps (Durvillaea spp., Fucales) are 'primary' foundation species that control community structures and ecosystem functions on temperate wave-exposed rocky reefs. However, these large foundation species are threatened by disturbances and stressors, including invasive species, sedimentation and heatwaves. It is unknown whether 'alternative' foundation species can replace lost southern bull kelps and its associated communities and networks. We compared community structure (by quantifying abundances of different species) and attachment-interaction networks (by quantifying which species were attached to other species) among plots dominated by Durvillaea spp. and plots where Durvillaea spp. were lost either through long-term repeated experimental removals or by recent stress from a marine heatwave. Long-term experimental removal plots were dominated by 'alternative' foundation species, the canopy-forming Cystophora spp. (Fucales), whereas the recent heatwave stressed plots were dominated by the invasive kelp Undaria pinnatifida (Laminariales). A network analysis of attachment interactions showed that communities differed among plots dominated by either Durvillaea spp., Cystophora spp. or U. pinnatifida, with different relationships between the primary, or alternative, foundation species and attached epiphytic 'secondary' foundation species. For example, native Cystophora spp. were more important as hosts for secondary foundation species compared to Durvillaea spp. and U. pinnatifida. Instead, Durvillaea spp. facilitated encrusting algae, which in turn provided habitat for gastropods. We conclude that (a) repeated disturbances and strong stressors can reveal ecological differences between primary and alternative foundation species, (b) analyses of abundances and attachment-networks are supplementary methods to identify linkages between primary, alternative and secondary foundation species, and (c) interspersed habitats dominated by different types of foundation species increase system-level biodiversity by supporting different species-abundance patterns and species-attachment networks.

KW - Biodiversity

KW - Community analysis

KW - Epibiosis

KW - Facilitation cascade

KW - Foundation species

KW - Habitat cascades

KW - Marine heatwave

KW - Network analysis

UR - http://www.scopus.com/inward/record.url?scp=85068080726&partnerID=8YFLogxK

U2 - 10.3390/d11040056

DO - 10.3390/d11040056

M3 - Article

VL - 11

JO - Diversity

JF - Diversity

SN - 1424-2818

IS - 4

M1 - 56

ER -