TY - JOUR
T1 - Chlamydomonas reinhardtii as a model system for pro-active herbicide resistance evolution research
AU - Reboud, X.
AU - Majerus, N.
AU - Gasquez, J.
AU - Powles, Stephen
PY - 2007
Y1 - 2007
N2 - Modern herbicides greatly contribute to world agricultural production but their sustainability is threatened by the widespread evolution of herbicide resistant weedy plant populations. Despite the commercial and scientific importance of resistance, there has not been an experimental model system for pro-actively evaluating the potential for herbicide resistance evolution. Here, utilizing the rapidly growing, unicellular photosynthetic microalgae Chlamydomonas reinhardtii (Dangeard), a ratchet protocol has been developed that solves the problem of maintaining both large populations and strong herbicide selection. The ratchet protocol is a progressive set of cycles, each cycle commencing with a population of approximately one million individuals apportioned amongst three herbicide doses for 14 days. Whenever the evolving population demonstrates growth across the three herbicide selection intensities, then the population ratchets to the next cycle of higher herbicide dose. Therefore, by always maintaining large populations under selection pressure, this system offers the opportunity for beneficial mutations to arise and be enriched. Using the well-characterized atrazine herbicide, the ratchet protocol resulted in rapid evolution of populations with different levels of resistance. This robust laboratory based Chlamydomonas system is proposed for application in establishing the respective propensity for resistance evolution to herbicides or other selecting agents. (C) 2007 The Linnean Society of London.
AB - Modern herbicides greatly contribute to world agricultural production but their sustainability is threatened by the widespread evolution of herbicide resistant weedy plant populations. Despite the commercial and scientific importance of resistance, there has not been an experimental model system for pro-actively evaluating the potential for herbicide resistance evolution. Here, utilizing the rapidly growing, unicellular photosynthetic microalgae Chlamydomonas reinhardtii (Dangeard), a ratchet protocol has been developed that solves the problem of maintaining both large populations and strong herbicide selection. The ratchet protocol is a progressive set of cycles, each cycle commencing with a population of approximately one million individuals apportioned amongst three herbicide doses for 14 days. Whenever the evolving population demonstrates growth across the three herbicide selection intensities, then the population ratchets to the next cycle of higher herbicide dose. Therefore, by always maintaining large populations under selection pressure, this system offers the opportunity for beneficial mutations to arise and be enriched. Using the well-characterized atrazine herbicide, the ratchet protocol resulted in rapid evolution of populations with different levels of resistance. This robust laboratory based Chlamydomonas system is proposed for application in establishing the respective propensity for resistance evolution to herbicides or other selecting agents. (C) 2007 The Linnean Society of London.
U2 - 10.1111/j.1095-8312.2007.00787.x
DO - 10.1111/j.1095-8312.2007.00787.x
M3 - Article
SN - 0024-4066
VL - 91
SP - 257
EP - 266
JO - Biological Journal of the Linnean Society
JF - Biological Journal of the Linnean Society
IS - 2
ER -