Characterization of near-isogenic lines confirmed QTL and revealed candidate genes for plant height and yield-related traits in common wheat

Yunxiao Zhang, Hui Liu, Guijun Yan

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Plant height (PH) is closely associated with yield-related traits and environmental adaptation. Seven pairs of near-isogenic lines (NILs) targeting four QTL on 3AL, 4BL, 4AS, and 7AL wheat chromosome arms were assessed for PH and four yield-related traits including yield per plant (Y/P), grain number per spike (G/S), thousand kernel weight (TKW), and biomass per plant (B/P). Significant differences were observed in the NIL pairs for the measured traits. NIL pairs targeting the 3AL QTL differed significantly in PH, G/S, and TKW; NILs targeting the 4BL QTL differed significantly in PH, Y/P, and B/P; NIL pairs targeting the 4AS QTL differed significantly in all the traits; and NIL pairs targeting the 7AL QTL differed significantly in PH. A 90 K SNP genotyping assay of the NILs detected nineteen SNPs associated with fourteen functional genes. Among them, eight candidate genes are related to Rht proteins, four genes are related to hormone pathways and two genes are related to carbohydrate synthesis and transport. By searching the interval marker physical positions, it was found that the four targeted QTL in this study overlapped with eight previously reported QTL for PH, TKW, biomass, and yield. Correlation analysis revealed that PH significantly and positively correlated with B/P and G/S. The SNP and candidate gene information is potentially useful for marker-assisted selection in breeding programs, and the four targeted QTL are proved to be critical genomic regions controlling the investigated agronomic traits, which can be further fine mapped to identify the underlying genes.

Original languageEnglish
Article number4
JournalMolecular Breeding
Volume41
Issue number1
DOIs
Publication statusPublished - Jan 2021

Fingerprint

Dive into the research topics of 'Characterization of near-isogenic lines confirmed QTL and revealed candidate genes for plant height and yield-related traits in common wheat'. Together they form a unique fingerprint.

Cite this