Characterising and improving a magnetic gradiometer for geophysical exploration

    Research output: ThesisDoctoral Thesis

    1277 Downloads (Pure)


    [Truncated abstract] Magnetic gradiometers are powerful tools for mineral exploration. The magnetic field contains valuable information about the mineral content of the surveyed terrain. The magnetic gradient specifies the amount of spatial variation in the direction and magnitude of the magnetic field. Surveys that measure the magnetic gradient provide vastly more information about geological targets than the magnetic field alone. This technology could have enormous benefits in terms of new discoveries and lower exploration costs. The magnetic gradient is normally calculated by subtracting the outputs of two total field magnetometers which are separated by a baseline. In 1997, a direct string magnetic gradiometer (DSMG) was developed that directly measures magnetic gradients using only a single string as its sensing element. This thesis describes research conducted to improve the sensitivity and performance of the DSMG. The main advantage of the DSMG is that only gradients can induce second harmonic vibrations in the string. Thus, the DSMG is insensitive to uniform magnetic fields that we are not interested in, such as the global magnetic field of the Earth. By using inductive electronics to measure second harmonic string vibrations, we can select to measure the magnetic gradient of nearby targets. Recent work has shown that a magnetic gradiometer with a noise floor of 0.01 nT/m/ √ Hz should be sufficiently sensitive for geophysical exploration. In order to reach this goal, this thesis presents an investigation of all noise sources affecting the DSMG. ... Gas damping is negligible in high vacuum and no vibration isolation is required. This means that longer strings with low resonant frequencies can be used. Using theoretical modelling, I show that a space borne DSMG should be able to match the white noise level of SQuID based magnetic gradiometers and have a lower 1/f noise corner. Deployment in space could be the most viable application of the DSMG because of the ease of operation and enhancement of sensitivity. If the thermal noise level is reduced then other sources of noise will start to become more important. When rotated in the Earth's magnetic field, the DSMG detects a pseudo magnetic gradient despite the field being almost uniform. A possible cause is magnetically susceptible parts which are magnetically aligning with the Earth's field. I have conducted a thorough investigation of magnetic susceptible parts in the DSMG and reported the results in this thesis. In the DSMG, a pair of inductive pickup coils are used to measure the string's displacement with a root mean square accuracy of 1011 m/ √ Hz. This is adequate at present but the inductive electronics may not be sensitive enough after other improvements in the DSMG are implemented. Here, I present a new capacitive displacement readout with a high sensitivity of 1013 m/ √ Hz. The thesis also presents some magnetic gradient measurements in the lab and the results of a ground survey in the field. These trial measurements are used to characterise the DSMG and demonstrate its effectiveness for airborne surveying.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Awarding Institution
    • The University of Western Australia
    • Ju, Li, Supervisor
    • Blair, David, Supervisor
    • Veryaskin, Alexey, Supervisor
    Award date14 Dec 2009
    Publication statusUnpublished - 2009


    Dive into the research topics of 'Characterising and improving a magnetic gradiometer for geophysical exploration'. Together they form a unique fingerprint.

    Cite this