Characterisation of porosity and root growth in a sodic texture-contrast soil

Laurence Jassogne

    Research output: ThesisDoctoral Thesis

    293 Downloads (Pure)


    In Australia a class of soils known as sodic duplex soils covers approximately 20% of the continent. Their defining characteristic is a sharp texture contrast between the A (or E) and B horizon. The upper B horizon at the point of contact with the E horizon is often highly sodic and of such a high strength that root growth and proliferation, water conductivity, aeration, water storage and water uptake are restricted. Roots growing in these soils rely on channels created by previous roots or cracks arising from shrink– swell forces associated with seasonal wetting and drying. It has been suggested that by increasing the number of these channels in the subsoil, the structure and permeability of the subsoil would be increased as would be the number of preferential pathways for following generation roots. A biological approach for improving soil macroporosity would be to use plants that can grow through that hostile layer creating new channels. This is known as the primer plant concept. This concept is based on a better understanding of root soil interactions. It is accepted that root growth is influenced by the soil structure and the soil structure is influenced by root growth. However, a lot of these dynamics are still unknown. This project aims to contribute to improving that knowledge by investigating the use of modern techniques to study plant/root interactions in duplex soils. First macroporosity and mesoporosity were characterized in three dimensions using medical computer tomography and micro-tomography. Then the imaging methodology was improved by using a local and adaptive threshold technique based on indicator kriging instead of a global threshold. Using this new methodology, changes in porosity were analysed in intact samples when three different plant species were grown for 12 weeks. The plants were canola (Brassica napus); lucerne (Medicago sativum) and saltbush (Atriplex nummularia) hypothesizing saltbush would change the porosity more because it is a native plant species based on the primer plant concept. The results showed that the porosity changed significantly after root growth but no ii differences were found between plant species. The changes could also not all be attributed to root growth because cracks were also formed after 12 weeks. Therefore, the living roots were visualized and characterized using a new tracing algorithm 'rootviz'. This revealed that saltbush was growing more roots down through the profile. Lucerne seemed to grow roots down the profile as well but to a lesser extend. Both of these plants seemed to have more geotropic features than canola that seemed to grow more laterals and had a more exploratory behaviour.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Publication statusUnpublished - 2008

    Fingerprint Dive into the research topics of 'Characterisation of porosity and root growth in a sodic texture-contrast soil'. Together they form a unique fingerprint.

    Cite this