Projects per year
Abstract
The maturation of the autonomic nervous system (ANS) starts in the gestation period and it is completed after birth in a variable time, reaching its peak in adulthood. However, the development of ANS maturation is not entirely understood in newborns. Clinically, the ANS condition is evaluated with monitoring of gestational age, Apgar score, heart rate, and by quantification of heart rate variability using linear methods. Few researchers have addressed this problem from the perspective nonlinear data analysis. This paper proposes a new data-driven methodology using nonlinear time series analysis, based on complex networks, to classify ANS conditions in newborns. We map 74 time series given by RR intervals from premature and full-term newborns to ordinal partition networks and use complexity quantifiers to discriminate the dynamical process present in both conditions. We obtain three complexity quantifiers (permutation, conditional, and global node entropies) using network mappings from forward and reverse directions, and considering different time lags and embedding dimensions. The results indicate that time asymmetry is present in the data of both groups and the complexity quantifiers can differentiate the groups analysed. We show that the conditional and global node entropies are sensitive for detecting subtle differences between the neonates, particularly for small embedding dimensions (m < 7). This study reinforces the assessment of nonlinear techniques for RR interval time series analysis. [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 829-842 |
Number of pages | 14 |
Journal | Medical and Biological Engineering and Computing |
Volume | 60 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2022 |
Fingerprint
Dive into the research topics of 'Characterisation of neonatal cardiac dynamics using ordinal partition network'. Together they form a unique fingerprint.-
TSuNAMi: Time Series Network Animal Modelling
Small, M. (Investigator 01), Walker, D. (Investigator 01), Correa, D. (Investigator 03) & Blache, D. (Investigator 04)
ARC Australian Research Council
1/09/20 → 31/08/25
Project: Research
-
ARC Training Centre for Transforming Maintenance through Data Science
Rohl, A. (Investigator 01), Small, M. (Investigator 02), Hodkiewicz, M. (Investigator 03), Loxton, R. (Investigator 04), O'Halloran, K. (Investigator 05), Tan, T. (Investigator 06), Calo, V. (Investigator 07), Reynolds, M. (Investigator 08), Liu, W. (Investigator 09), While, R. (Investigator 10), French, T. (Investigator 11), Cripps, E. (Investigator 12), Cardell-Oliver, R. (Investigator 13) & Correa, D. (Investigator 14)
ARC Australian Research Council
1/01/19 → 24/02/25
Project: Research