Changes in secondary metabolites contents and stress responses in Salvia miltiorrhiza via ScWRKY35 overexpression: Insights from a wild relative Salvia castanea

Guilian Zhang, Yuee Sun, Najeeb Ullah, Deepak Kasote, Longyi Zhu, Hui Liu, Ling Xu

Research output: Contribution to journalArticlepeer-review

Abstract

Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.

Original languageEnglish
Article number108671
Number of pages13
JournalPlant Physiology and Biochemistry
Volume211
Early online date3 May 2024
DOIs
Publication statusPublished - Jun 2024

Fingerprint

Dive into the research topics of 'Changes in secondary metabolites contents and stress responses in Salvia miltiorrhiza via ScWRKY35 overexpression: Insights from a wild relative Salvia castanea'. Together they form a unique fingerprint.

Cite this