TY - JOUR
T1 - Changes in running mechanics over 100-m, 200-m and 400-m treadmill sprints
AU - Girard, O.
AU - Brocherie, F.
AU - Tomazin, K.
AU - Farooq, A.
AU - Morin, J. B.
PY - 2016/6/14
Y1 - 2016/6/14
N2 - Purpose: Compare alterations in running mechanics during maximal treadmill sprints of different distances. Methods: Eleven physically active males performed short (100-m), medium (200-m) and long (400-m) running sprints on an instrumented treadmill. Continuous measurement of running kinetics/kinematics and spring-mass characteristics were recorded and values subsequently averaged over every 50-m distance intervals for comparison. Results: Compared with the initial 50 m, running velocity decreased (P<0.001) by 8±2%, 20±4% and 39±7% at the end of the 100, 200 and 400-m, respectively. All sprint distances (except for step length in the 100-m) induced significantly longer (P<0.05) contact times (+7±4%, +22±8% and +36±13%) and lower step lengths (-1±4%, -5±5% and -41±2%) and frequencies (-6±3%, -13±7% and -22±8%) at the end of the 100-m, 200-m and 400-m, respectively. Larger reductions in ground reaction forces occurred in horizontal versus vertical direction, with greater changes with increasing sprinting distance (P<0.05). Similarly, the magnitude of decrement in vertical stiffness increased with sprint distance (P<0.05), while leg stiffness decreases were smaller and limited to 200-m and 400-m runs. Overall, we observed earlier and larger alterations for the 400-m compared with other distances. Conclusions: The magnitude of changes in running velocity and mechanics over short (100-m), medium (200-m) and long (400-m) treadmill sprints increases with sprint distance. The alterations in stride mechanics occur relatively earlier during the 400-m compared with the 100-m and 200-m runs.
AB - Purpose: Compare alterations in running mechanics during maximal treadmill sprints of different distances. Methods: Eleven physically active males performed short (100-m), medium (200-m) and long (400-m) running sprints on an instrumented treadmill. Continuous measurement of running kinetics/kinematics and spring-mass characteristics were recorded and values subsequently averaged over every 50-m distance intervals for comparison. Results: Compared with the initial 50 m, running velocity decreased (P<0.001) by 8±2%, 20±4% and 39±7% at the end of the 100, 200 and 400-m, respectively. All sprint distances (except for step length in the 100-m) induced significantly longer (P<0.05) contact times (+7±4%, +22±8% and +36±13%) and lower step lengths (-1±4%, -5±5% and -41±2%) and frequencies (-6±3%, -13±7% and -22±8%) at the end of the 100-m, 200-m and 400-m, respectively. Larger reductions in ground reaction forces occurred in horizontal versus vertical direction, with greater changes with increasing sprinting distance (P<0.05). Similarly, the magnitude of decrement in vertical stiffness increased with sprint distance (P<0.05), while leg stiffness decreases were smaller and limited to 200-m and 400-m runs. Overall, we observed earlier and larger alterations for the 400-m compared with other distances. Conclusions: The magnitude of changes in running velocity and mechanics over short (100-m), medium (200-m) and long (400-m) treadmill sprints increases with sprint distance. The alterations in stride mechanics occur relatively earlier during the 400-m compared with the 100-m and 200-m runs.
KW - Fatigue
KW - Ground reaction forces
KW - Running mechanics
KW - Sprint
UR - http://www.scopus.com/inward/record.url?scp=84979462200&partnerID=8YFLogxK
U2 - 10.1016/j.jbiomech.2016.03.020
DO - 10.1016/j.jbiomech.2016.03.020
M3 - Article
C2 - 27015963
AN - SCOPUS:84979462200
SN - 0021-9290
VL - 49
SP - 1490
EP - 1497
JO - Journal of Biomechanics
JF - Journal of Biomechanics
IS - 9
ER -