Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles: synthesis, antibacterial evaluation and preliminary mechanism of action studies

Andrew J. Tague, Papanin Putsathit, Katherine A. Hammer, Steven M. Wales, Daniel R. Knight, Thomas V. Riley, Paul A. Keller, Stephen G. Pyne

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Synthetic small molecular antimicrobial peptidomimetics represent a promising new class of potential antibiotics due to their membrane-disrupting ability and their decreased propensity for bacterial resistance. A library of 43 mono- and di-cationic biaryl 1,2,3-triazolyl peptidomimetics was designed and synthesized based upon previously established lead biarylpeptidomimetics and a known pharmaco-phore. A reliable, facile and modular synthetic pathway allowed for the efficient synthesis of multiple unique scaffolds which were subjected to divergent derivatization to furnish the amphiphilic compounds. In vitro testing revealed enhanced antibacterial efficacy against a range of pathogenic bacteria, including bacterial isolates with methicillin, vancomycin, daptomycin, or multi-drug resistance. Preliminary time-kill kinetics and membrane-disruption assays revealed a likely membrane-active mechanism for the tested peptidomimetics. An optimal balance between hydrophobicity and cationic charge was found to be essential for reduced cytotoxicity/haemolysis (i.e. membrane selectivity) and enhanced Gram-negative activity. The cationic biaryl amphiphile 81 was identified as a potent, broad-spectrum peptidomimetic with activity against Gram-positive (methicillin-resistant Staphylococcus aureus MIC = 2 mu g/mL) and Gram-negative (Escherichia coli - MIC = 4 mu g/mL) pathogenic bacteria. (C) 2019 Elsevier Masson SAS. All rights reserved.

Original languageEnglish
Pages (from-to)386-404
Number of pages19
JournalEuropean Journal of Medicinal Chemistry
Volume168
DOIs
Publication statusPublished - 15 Apr 2019

Fingerprint

Dive into the research topics of 'Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles: synthesis, antibacterial evaluation and preliminary mechanism of action studies'. Together they form a unique fingerprint.

Cite this