TY - JOUR
T1 - Catecholaminergic innervation of guinea pig superior olivary complex
AU - Mulders, Wilhelmina
AU - Robertson, Donald
PY - 2005
Y1 - 2005
N2 - In mammals, olivocochlear neurons in the superior olivary complex project to the cochlea, providing input to outer hair cells and auditory afferents contacting inner hair cells. In the rat it has been demonstrated that olivocochlear neurons receive noradrenergic input, arising from the locus coeruleus and it has been demonstrated in this species using in vitro brain slices that noradrenaline exerts a direct, mostly excitatory effect on an olivocochlear subpopulation. The guinea pig is a more commonly used animal in auditory physiology than the rat and anatomical data on noradrenaline in the auditory brainstem in this species are lacking. Because it has been shown that a compact locus coeruleus is not present in the guinea pig, subtle species differences might be expected. Therefore, using immunohistochemical and tracing techniques we have investigated in the guinea pig (1) the noradrenergic and dopaminergic innervation of the superior olivary complex, (2) the anatomical relationship between noradrenergic fibres and olivocochlear neurons and (3) the origin of the noradrenergic input to this brainstem region. The results show that the guinea pig superior olivary complex receives moderately dense noradrenergic innervation and no dopaminergic innervation. In addition, noradrenergic fibres and varicosities were observed in close contact with both somata and dendrites of olivocochlear neurons, strongly suggestive of synaptic contacts. Finally the results show that a significant component of the noradrenergic innervation of the guinea pig superior olivary complex arises in the locus subcoeruleus, which is a structure likely to be the homologue of the locus coeruleus in rats and other species. (c) 2005 Elsevier B.V. All rights reserved.
AB - In mammals, olivocochlear neurons in the superior olivary complex project to the cochlea, providing input to outer hair cells and auditory afferents contacting inner hair cells. In the rat it has been demonstrated that olivocochlear neurons receive noradrenergic input, arising from the locus coeruleus and it has been demonstrated in this species using in vitro brain slices that noradrenaline exerts a direct, mostly excitatory effect on an olivocochlear subpopulation. The guinea pig is a more commonly used animal in auditory physiology than the rat and anatomical data on noradrenaline in the auditory brainstem in this species are lacking. Because it has been shown that a compact locus coeruleus is not present in the guinea pig, subtle species differences might be expected. Therefore, using immunohistochemical and tracing techniques we have investigated in the guinea pig (1) the noradrenergic and dopaminergic innervation of the superior olivary complex, (2) the anatomical relationship between noradrenergic fibres and olivocochlear neurons and (3) the origin of the noradrenergic input to this brainstem region. The results show that the guinea pig superior olivary complex receives moderately dense noradrenergic innervation and no dopaminergic innervation. In addition, noradrenergic fibres and varicosities were observed in close contact with both somata and dendrites of olivocochlear neurons, strongly suggestive of synaptic contacts. Finally the results show that a significant component of the noradrenergic innervation of the guinea pig superior olivary complex arises in the locus subcoeruleus, which is a structure likely to be the homologue of the locus coeruleus in rats and other species. (c) 2005 Elsevier B.V. All rights reserved.
U2 - 10.1016/j.jchemneu.2005.09.005
DO - 10.1016/j.jchemneu.2005.09.005
M3 - Article
VL - 30
SP - 230
EP - 242
JO - Journal of Chemical Neuroanatomy
JF - Journal of Chemical Neuroanatomy
SN - 0891-0618
IS - 4
ER -