cAMP controls human renin mRNA stability via specific RNA-binding proteins

B.J. Morris, D.J. Adams, Dianne Beveridge, L. Van Der Weyden, H. Mangs, Peter Leedman

Research output: Contribution to journalReview article

23 Citations (Scopus)

Abstract

It is now recognized that post-transcriptional mechanisms are pivotal to renin production. These involve factors that modulate renin mRNA stability. In 2003 new data has emerged from work in Australia and Germany that has identified several of the, as many as, 20 or so proteins involved. These include CP1 (hnRNP E1), HuR, HADHB, dynamin, nucleolin, YP-1, hnRNP K and MINT-homologous protein. Cyclic AMP (cAMP) is a crucial regulator of renin secretion as well as transcriptional and post-transcriptional control of expression. Many of the RNA-binding proteins that were identified responded to forskolin, increasing in amount by two to 10-fold. The cAMP mechanisms that regulate renin mRNA target, at least in large part, other genes that presumably encode some of these proteins. The increase in the expression of these then facilitates, sequentially, renin mRNA stabilization and destabilization. Our data, using a battery of different techniques, confirm that CP1 and HuR stabilize renin mRNA, whereas HADHB causes destabilization. These proteins target cis-acting C-rich sequences (in the case of CP1) and AU-rich sequences (HuR) in the distal region of the 3'-untranslated region of renin mRNA. We found HADHB was enriched in juxtaglomerular cells and that that within Calu-6 cells HADHB, HuR and CP1 all localized in nuclear subregions, as well as cytoplasm (HADHB and CP1) and mitochondria (HADHB) commensurate with the role each plays in control of renin mRNA stability. The specific proteins that bind to human renin mRNA have begun to be revealed. Cyclic AMP upregulates the binding of several of these proteins, which in turn affect renin mRNA stability and thus overall expression of renin.
Original languageEnglish
Pages (from-to)369-373
JournalActa Physiologica Scandinavica
Volume181
DOIs
Publication statusPublished - 2004

    Fingerprint

Cite this