Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914

(LIGO Scientific Collaboration)

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz.

Original languageEnglish
Article number062003
JournalPhysical Review D
Volume95
Issue number6
DOIs
Publication statusPublished - 28 Mar 2017

Fingerprint

LIGO (observatory)
gravitational waves
detectors
readout
estimates
calendars
false alarms
radiation pressure
feedback control
systematic errors
radio frequencies
astrophysics
actuators
filters
photons

Cite this

@article{8c73be077ad24453a20ae04ea89672a1,
title = "Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914",
abstract = "In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10{\%} in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz.",
author = "{(LIGO Scientific Collaboration)} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {M. R.} and K. Ackley and C. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and N. Aggarwal and Aguiar, {O. D.} and A. Ain and P. Ajith and B. Allen and Altin, {P. A.} and Amariutei, {D. V.} and Anderson, {S. B.} and Anderson, {W. G.} and K. Arai and Araya, {M. C.} and Arceneaux, {C. C.} and Areeda, {J. S.} and Arun, {K. G.} and G. Ashton and M. Ast and Aston, {S. M.} and P. Aufmuth and C. Aulbert and S. Babak and Baker, {P. T.} and Ballmer, {S. W.} and Barayoga, {J. C.} and Barclay, {S. E.} and Barish, {B. C.} and D. Barker and B. Barr and L. Barsotti and J. Bartlett and I. Bartos and R. Bassiri and Batch, {J. C.} and C. Baune and B. Behnke and Bell, {A. S.} and Bell, {C. J.} and Berger, {B. K.} and J. Bergman and G. Bergmann and Berry, {C. P.L.} and J. Betzwieser and S. Bhagwat and R. Bhandare and Bilenko, {I. A.} and G. Billingsley and J. Birch and R. Birney and S. Biscans and A. Bisht and C. Biwer and Blackburn, {J. K.} and Blair, {C. D.} and D. Blair and Blair, {R. M.} and O. Bock and Bodiya, {T. P.} and C. Bogan and A. Bohe and P. Bojtos and C. Bond and R. Bork and S. Bose and Brady, {P. R.} and Braginsky, {V. B.} and Brau, {J. E.} and M. Brinkmann and P. Brockill and Brooks, {A. F.} and Brown, {D. A.} and Brown, {D. D.} and Brown, {N. M.} and Buchanan, {C. C.} and A. Buikema and A. Buonanno and Byer, {R. L.} and L. Cadonati and C. Cahillane and {Calder{\'o}n Bustillo}, J. and T. Callister and Camp, {J. B.} and Cannon, {K. C.} and J. Cao and Capano, {C. D.} and S. Caride and S. Caudill and M. Cavagli{\`a} and C. Cepeda and R. Chakraborty and T. Chalermsongsak and Chamberlin, {S. J.} and M. Chan and S. Chao and P. Charlton and Chen, {H. Y.} and Y. Chen and C. Cheng and Cho, {H. S.} and M. Cho and Chow, {J. H.} and N. Christensen and Q. Chu and S. Chung and G. Ciani and F. Clara and Clark, {J. A.} and Collette, {C. G.} and L. Cominsky and M. Constancio and D. Cook and Corbitt, {T. R.} and N. Cornish and A. Corsi and Costa, {C. A.} and Coughlin, {M. W.} and Coughlin, {S. B.} and Countryman, {S. T.} and P. Couvares and Coward, {D. M.} and Cowart, {M. J.} and Coyne, {D. C.} and R. Coyne and K. Craig and Creighton, {J. D.E.} and J. Cripe and Crowder, {S. G.} and A. Cumming and L. Cunningham and {Dal Canton}, T. and Danilishin, {S. L.} and K. Danzmann and Darman, {N. S.} and I. Dave and Daveloza, {H. P.} and Davies, {G. S.} and Daw, {E. J.} and D. Debra and {Del Pozzo}, W. and T. Denker and T. Dent and V. Dergachev and R. Derosa and R. Desalvo and S. Dhurandhar and D{\'i}az, {M. C.} and {Di Palma}, I. and G. Dojcinoski and F. Donovan and Dooley, {K. L.} and S. Doravari and R. Douglas and Downes, {T. P.} and M. Drago and Drever, {R. W.P.} and Driggers, {J. C.} and Z. Du and Dwyer, {S. E.} and Edo, {T. B.} and Edwards, {M. C.} and M. Evans and X. Fan and Q. Fang and Farr, {W. M.} and A. Ghosh and S. Gras and Green, {A. C.} and A. Gupta and G. Hammond and Hart, {M. J.} and Hartman, {M. T.} and Heng, {I. S.} and Hosken, {D. J.} and Howell, {E. J.} and Hu, {Y. M.} and Jones, {D. I.} and R. Jones and L. Ju and G. Kang and T. Kaur and R. Kennedy and C. Kim and N. Kim and King, {E. J.} and J. Lange and Lee, {C. H.} and K. Lee and Li, {T. G.F.} and R. Lynch and Y. Ma and Martin, {R. M.} and K. Mason and McGuire, {S. C.} and H. Miao and J. Miller and S. Mitra and Moore, {C. J.} and S. Mukherjee and Murphy, {D. J.} and Murray, {P. G.} and Nguyen, {T. T.} and Ottaway, {D. J.} and R. Pereira and J. Powell and Price, {L. R.} and J. Qin and S. Reid and Robertson, {N. A.} and Sanders, {J. R.} and J. Scott and Z. Shao and Smith, {J. R.} and Smith, {N. D.} and Smith, {R. J.E.} and R. Stone and S. Strigin and L. Sun and R. Taylor and Thomas, {E. G.} and M. Tse and Vine, {D. J.} and Vyatchanin, {S. P.} and S. Walsh and H. Wang and M. Wang and X. Wang and Y. Wang and Weinstein, {A. J.} and R. Weiss and L. Wen and Whelan, {J. T.} and White, {D. J.} and Williams, {R. D.} and Wright, {J. L.} and Yap, {M. J.} and H. Yu and F. Zhang and L. Zhang and M. Zhang and Y. Zhang and C. Zhao and Zhu, {X. J.}",
year = "2017",
month = "3",
day = "28",
doi = "10.1103/PhysRevD.95.062003",
language = "English",
volume = "95",
journal = "Physical Review D - Particles, Fields, Gravitation and Cosmology",
issn = "1550-7998",
publisher = "American Physical Society",
number = "6",

}

Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. / (LIGO Scientific Collaboration).

In: Physical Review D, Vol. 95, No. 6, 062003, 28.03.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914

AU - (LIGO Scientific Collaboration)

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abernathy, M. R.

AU - Ackley, K.

AU - Adams, C.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, B.

AU - Altin, P. A.

AU - Amariutei, D. V.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Arai, K.

AU - Araya, M. C.

AU - Arceneaux, C. C.

AU - Areeda, J. S.

AU - Arun, K. G.

AU - Ashton, G.

AU - Ast, M.

AU - Aston, S. M.

AU - Aufmuth, P.

AU - Aulbert, C.

AU - Babak, S.

AU - Baker, P. T.

AU - Ballmer, S. W.

AU - Barayoga, J. C.

AU - Barclay, S. E.

AU - Barish, B. C.

AU - Barker, D.

AU - Barr, B.

AU - Barsotti, L.

AU - Bartlett, J.

AU - Bartos, I.

AU - Bassiri, R.

AU - Batch, J. C.

AU - Baune, C.

AU - Behnke, B.

AU - Bell, A. S.

AU - Bell, C. J.

AU - Berger, B. K.

AU - Bergman, J.

AU - Bergmann, G.

AU - Berry, C. P.L.

AU - Betzwieser, J.

AU - Bhagwat, S.

AU - Bhandare, R.

AU - Bilenko, I. A.

AU - Billingsley, G.

AU - Birch, J.

AU - Birney, R.

AU - Biscans, S.

AU - Bisht, A.

AU - Biwer, C.

AU - Blackburn, J. K.

AU - Blair, C. D.

AU - Blair, D.

AU - Blair, R. M.

AU - Bock, O.

AU - Bodiya, T. P.

AU - Bogan, C.

AU - Bohe, A.

AU - Bojtos, P.

AU - Bond, C.

AU - Bork, R.

AU - Bose, S.

AU - Brady, P. R.

AU - Braginsky, V. B.

AU - Brau, J. E.

AU - Brinkmann, M.

AU - Brockill, P.

AU - Brooks, A. F.

AU - Brown, D. A.

AU - Brown, D. D.

AU - Brown, N. M.

AU - Buchanan, C. C.

AU - Buikema, A.

AU - Buonanno, A.

AU - Byer, R. L.

AU - Cadonati, L.

AU - Cahillane, C.

AU - Calderón Bustillo, J.

AU - Callister, T.

AU - Camp, J. B.

AU - Cannon, K. C.

AU - Cao, J.

AU - Capano, C. D.

AU - Caride, S.

AU - Caudill, S.

AU - Cavaglià, M.

AU - Cepeda, C.

AU - Chakraborty, R.

AU - Chalermsongsak, T.

AU - Chamberlin, S. J.

AU - Chan, M.

AU - Chao, S.

AU - Charlton, P.

AU - Chen, H. Y.

AU - Chen, Y.

AU - Cheng, C.

AU - Cho, H. S.

AU - Cho, M.

AU - Chow, J. H.

AU - Christensen, N.

AU - Chu, Q.

AU - Chung, S.

AU - Ciani, G.

AU - Clara, F.

AU - Clark, J. A.

AU - Collette, C. G.

AU - Cominsky, L.

AU - Constancio, M.

AU - Cook, D.

AU - Corbitt, T. R.

AU - Cornish, N.

AU - Corsi, A.

AU - Costa, C. A.

AU - Coughlin, M. W.

AU - Coughlin, S. B.

AU - Countryman, S. T.

AU - Couvares, P.

AU - Coward, D. M.

AU - Cowart, M. J.

AU - Coyne, D. C.

AU - Coyne, R.

AU - Craig, K.

AU - Creighton, J. D.E.

AU - Cripe, J.

AU - Crowder, S. G.

AU - Cumming, A.

AU - Cunningham, L.

AU - Dal Canton, T.

AU - Danilishin, S. L.

AU - Danzmann, K.

AU - Darman, N. S.

AU - Dave, I.

AU - Daveloza, H. P.

AU - Davies, G. S.

AU - Daw, E. J.

AU - Debra, D.

AU - Del Pozzo, W.

AU - Denker, T.

AU - Dent, T.

AU - Dergachev, V.

AU - Derosa, R.

AU - Desalvo, R.

AU - Dhurandhar, S.

AU - Díaz, M. C.

AU - Di Palma, I.

AU - Dojcinoski, G.

AU - Donovan, F.

AU - Dooley, K. L.

AU - Doravari, S.

AU - Douglas, R.

AU - Downes, T. P.

AU - Drago, M.

AU - Drever, R. W.P.

AU - Driggers, J. C.

AU - Du, Z.

AU - Dwyer, S. E.

AU - Edo, T. B.

AU - Edwards, M. C.

AU - Evans, M.

AU - Fan, X.

AU - Fang, Q.

AU - Farr, W. M.

AU - Ghosh, A.

AU - Gras, S.

AU - Green, A. C.

AU - Gupta, A.

AU - Hammond, G.

AU - Hart, M. J.

AU - Hartman, M. T.

AU - Heng, I. S.

AU - Hosken, D. J.

AU - Howell, E. J.

AU - Hu, Y. M.

AU - Jones, D. I.

AU - Jones, R.

AU - Ju, L.

AU - Kang, G.

AU - Kaur, T.

AU - Kennedy, R.

AU - Kim, C.

AU - Kim, N.

AU - King, E. J.

AU - Lange, J.

AU - Lee, C. H.

AU - Lee, K.

AU - Li, T. G.F.

AU - Lynch, R.

AU - Ma, Y.

AU - Martin, R. M.

AU - Mason, K.

AU - McGuire, S. C.

AU - Miao, H.

AU - Miller, J.

AU - Mitra, S.

AU - Moore, C. J.

AU - Mukherjee, S.

AU - Murphy, D. J.

AU - Murray, P. G.

AU - Nguyen, T. T.

AU - Ottaway, D. J.

AU - Pereira, R.

AU - Powell, J.

AU - Price, L. R.

AU - Qin, J.

AU - Reid, S.

AU - Robertson, N. A.

AU - Sanders, J. R.

AU - Scott, J.

AU - Shao, Z.

AU - Smith, J. R.

AU - Smith, N. D.

AU - Smith, R. J.E.

AU - Stone, R.

AU - Strigin, S.

AU - Sun, L.

AU - Taylor, R.

AU - Thomas, E. G.

AU - Tse, M.

AU - Vine, D. J.

AU - Vyatchanin, S. P.

AU - Walsh, S.

AU - Wang, H.

AU - Wang, M.

AU - Wang, X.

AU - Wang, Y.

AU - Weinstein, A. J.

AU - Weiss, R.

AU - Wen, L.

AU - Whelan, J. T.

AU - White, D. J.

AU - Williams, R. D.

AU - Wright, J. L.

AU - Yap, M. J.

AU - Yu, H.

AU - Zhang, F.

AU - Zhang, L.

AU - Zhang, M.

AU - Zhang, Y.

AU - Zhao, C.

AU - Zhu, X. J.

PY - 2017/3/28

Y1 - 2017/3/28

N2 - In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz.

AB - In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz.

UR - http://www.scopus.com/inward/record.url?scp=85022327312&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.95.062003

DO - 10.1103/PhysRevD.95.062003

M3 - Article

VL - 95

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 6

M1 - 062003

ER -