TY - BOOK
T1 - Bridge load rating with model updating and stochastic analysis of vehicle-bridge interaction
AU - Ding, Lina
PY - 2010
Y1 - 2010
N2 - [Truncated abstract] Many load rating methods have been developed in recent years to evaluate the safety and serviceability of existing bridges. In general, the rating of a bridge is carried out by comparing the factored live load effects of nominated rating vehicles with the available bridge capacity. Therefore, accurate and practical approaches to calculate the live load on bridges resulting from moving vehicles and to estimate the bridge load carrying capacity are essential for bridge load rating. The research described in this thesis aims to develop a load rating procedure for accurately estimating the load carrying capacity of existing bridges. It involves three main parts of work. First, to obtain a reliable Finite Element (FE) model of the bridge under the current condition, FE model updating analysis is carried out to refine the bridge model based on the field measured vibration data. Second, detailed static nonlinear Finite Element Analysis (FEA) based on the updated FE model is carried out to determine the bridge load carrying capacity. In this part, the dynamic vehicle-bridge interaction is only approximately modelled by using the code specified Dynamic Amplification Factor (DAF) or Dynamic Load Coefficient (DLC). In the third part, to more precisely model dynamic vehicle-bridge interaction and predict the DAF, nonlinear stochastic dynamic response analysis of an equivalent hysteretic Single Degree of Freedom (SDOF) system subjected to a non-stationary non-zero mean excitation are carried out. The equivalent SDOF system is derived from the actual bridge conditions. The advantages of these approaches are that they can model the actual current condition of a bridge by applying the model updating method and take into account the effects of road surface roughness, single or multiple vehicles-bridge interaction and material nonlinearity of prestressed or reinforced concrete. ... At last, based on the principle of equivalent dissipated energy, the
AB - [Truncated abstract] Many load rating methods have been developed in recent years to evaluate the safety and serviceability of existing bridges. In general, the rating of a bridge is carried out by comparing the factored live load effects of nominated rating vehicles with the available bridge capacity. Therefore, accurate and practical approaches to calculate the live load on bridges resulting from moving vehicles and to estimate the bridge load carrying capacity are essential for bridge load rating. The research described in this thesis aims to develop a load rating procedure for accurately estimating the load carrying capacity of existing bridges. It involves three main parts of work. First, to obtain a reliable Finite Element (FE) model of the bridge under the current condition, FE model updating analysis is carried out to refine the bridge model based on the field measured vibration data. Second, detailed static nonlinear Finite Element Analysis (FEA) based on the updated FE model is carried out to determine the bridge load carrying capacity. In this part, the dynamic vehicle-bridge interaction is only approximately modelled by using the code specified Dynamic Amplification Factor (DAF) or Dynamic Load Coefficient (DLC). In the third part, to more precisely model dynamic vehicle-bridge interaction and predict the DAF, nonlinear stochastic dynamic response analysis of an equivalent hysteretic Single Degree of Freedom (SDOF) system subjected to a non-stationary non-zero mean excitation are carried out. The equivalent SDOF system is derived from the actual bridge conditions. The advantages of these approaches are that they can model the actual current condition of a bridge by applying the model updating method and take into account the effects of road surface roughness, single or multiple vehicles-bridge interaction and material nonlinearity of prestressed or reinforced concrete. ... At last, based on the principle of equivalent dissipated energy, the
KW - Structural analysis (Engineering)
KW - Dynamics
KW - Load factor design
KW - Bridges
KW - Live loads
KW - Design and construction
KW - Bridge load rating
KW - Model updating
KW - Vehicle bridge interaction
KW - Dynamic amplification factor
M3 - Doctoral Thesis
ER -