Break-up related 2170–2120 Ma mafic dykes across the North Atlantic craton: Final dismembering of a North Atlantic-Dharwar craton connection?

Mimmi K.M. Nilsson, Martin B. Klausen, Andreas Petersson

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Progress with supercontinental reconstructions relies on accurate age determinations for continental geological units such as mafic dyke swarms. Here we present zircon and baddeleyite U-Pb ID-TIMS isotope data of six mafic dykes from the Archean North Atlantic craton in present-day southern West and South-East Greenland. Two dykes in southern West Greenland yield crystallization ages of 2021 ± 4 Ma, for the NE-trending Hamborgersund dyke, and 2125 ± 9 Ma, for the E-trending Angissunguaq dyke. Additional age determinations of mafic dykes from South-East Greenland are 2166 ± 8 Ma and 2158 ± 8 Ma for two E–W trending dykes, herein named the Skjoldungen dykes, and 2137 ± 11 and 2124 ± 11 for two ENE and NE trending dykes, respectively. The name Ruinnæsset dykes is proposed for this slightly younger, ca. 2137–2124 Ma, generation of dykes in SE Greenland, and Nuuk dykes for coeval ca. 2125 Ma dykes in SW Greenland. The Skjoldungen and the Ruinnæsset dykes have primordial mantle geochemical signatures, with only minor LILE-enrichments. These signatures differ from other, more ‘lithospheric’ Proterozoic dykes within the region, and may reflect highly attenuated lithospheric extension during their emplacement. Coeval mafic magmatism in North Atlantic and Dharwar cratons suggests that these two fragments coexisted within a common Paleoproterozoic supercraton. A lack of younger age-matches further argue for ca. 2170–2140 Ma rifting and subsequent break-up of this Dharwar-North Atlantic connection, prior to the 2137–2124 Ma emplacement of the Ruinnæsset dykes. Other global age correlations are discussed and a likely paleogeographic reconstruction of North Atlantic craton together with the Dharwar and Superior cratons within a Paleoproterozoic supercraton is presented.

Original languageEnglish
Pages (from-to)70-87
JournalPrecambrian Research
Volume329
DOIs
Publication statusPublished - Aug 2019

Fingerprint

Crystallization
Isotopes
craton
age determination
dike
emplacement
baddeleyite
dike swarm
rifting
magmatism
Archean
Proterozoic
zircon
crystallization
isotope
mantle
young

Cite this

@article{81ea88a5f32a41178f4e2ac2d4f778c0,
title = "Break-up related 2170–2120 Ma mafic dykes across the North Atlantic craton: Final dismembering of a North Atlantic-Dharwar craton connection?",
abstract = "Progress with supercontinental reconstructions relies on accurate age determinations for continental geological units such as mafic dyke swarms. Here we present zircon and baddeleyite U-Pb ID-TIMS isotope data of six mafic dykes from the Archean North Atlantic craton in present-day southern West and South-East Greenland. Two dykes in southern West Greenland yield crystallization ages of 2021 ± 4 Ma, for the NE-trending Hamborgersund dyke, and 2125 ± 9 Ma, for the E-trending Angissunguaq dyke. Additional age determinations of mafic dykes from South-East Greenland are 2166 ± 8 Ma and 2158 ± 8 Ma for two E–W trending dykes, herein named the Skjoldungen dykes, and 2137 ± 11 and 2124 ± 11 for two ENE and NE trending dykes, respectively. The name Ruinn{\ae}sset dykes is proposed for this slightly younger, ca. 2137–2124 Ma, generation of dykes in SE Greenland, and Nuuk dykes for coeval ca. 2125 Ma dykes in SW Greenland. The Skjoldungen and the Ruinn{\ae}sset dykes have primordial mantle geochemical signatures, with only minor LILE-enrichments. These signatures differ from other, more ‘lithospheric’ Proterozoic dykes within the region, and may reflect highly attenuated lithospheric extension during their emplacement. Coeval mafic magmatism in North Atlantic and Dharwar cratons suggests that these two fragments coexisted within a common Paleoproterozoic supercraton. A lack of younger age-matches further argue for ca. 2170–2140 Ma rifting and subsequent break-up of this Dharwar-North Atlantic connection, prior to the 2137–2124 Ma emplacement of the Ruinn{\ae}sset dykes. Other global age correlations are discussed and a likely paleogeographic reconstruction of North Atlantic craton together with the Dharwar and Superior cratons within a Paleoproterozoic supercraton is presented.",
author = "Nilsson, {Mimmi K.M.} and Klausen, {Martin B.} and Andreas Petersson",
year = "2019",
month = "8",
doi = "10.1016/j.precamres.2018.12.028",
language = "English",
volume = "329",
pages = "70--87",
journal = "Precambrian Research",
issn = "0301-9268",
publisher = "Pergamon",

}

Break-up related 2170–2120 Ma mafic dykes across the North Atlantic craton : Final dismembering of a North Atlantic-Dharwar craton connection? / Nilsson, Mimmi K.M.; Klausen, Martin B.; Petersson, Andreas.

In: Precambrian Research, Vol. 329, 08.2019, p. 70-87.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Break-up related 2170–2120 Ma mafic dykes across the North Atlantic craton

T2 - Final dismembering of a North Atlantic-Dharwar craton connection?

AU - Nilsson, Mimmi K.M.

AU - Klausen, Martin B.

AU - Petersson, Andreas

PY - 2019/8

Y1 - 2019/8

N2 - Progress with supercontinental reconstructions relies on accurate age determinations for continental geological units such as mafic dyke swarms. Here we present zircon and baddeleyite U-Pb ID-TIMS isotope data of six mafic dykes from the Archean North Atlantic craton in present-day southern West and South-East Greenland. Two dykes in southern West Greenland yield crystallization ages of 2021 ± 4 Ma, for the NE-trending Hamborgersund dyke, and 2125 ± 9 Ma, for the E-trending Angissunguaq dyke. Additional age determinations of mafic dykes from South-East Greenland are 2166 ± 8 Ma and 2158 ± 8 Ma for two E–W trending dykes, herein named the Skjoldungen dykes, and 2137 ± 11 and 2124 ± 11 for two ENE and NE trending dykes, respectively. The name Ruinnæsset dykes is proposed for this slightly younger, ca. 2137–2124 Ma, generation of dykes in SE Greenland, and Nuuk dykes for coeval ca. 2125 Ma dykes in SW Greenland. The Skjoldungen and the Ruinnæsset dykes have primordial mantle geochemical signatures, with only minor LILE-enrichments. These signatures differ from other, more ‘lithospheric’ Proterozoic dykes within the region, and may reflect highly attenuated lithospheric extension during their emplacement. Coeval mafic magmatism in North Atlantic and Dharwar cratons suggests that these two fragments coexisted within a common Paleoproterozoic supercraton. A lack of younger age-matches further argue for ca. 2170–2140 Ma rifting and subsequent break-up of this Dharwar-North Atlantic connection, prior to the 2137–2124 Ma emplacement of the Ruinnæsset dykes. Other global age correlations are discussed and a likely paleogeographic reconstruction of North Atlantic craton together with the Dharwar and Superior cratons within a Paleoproterozoic supercraton is presented.

AB - Progress with supercontinental reconstructions relies on accurate age determinations for continental geological units such as mafic dyke swarms. Here we present zircon and baddeleyite U-Pb ID-TIMS isotope data of six mafic dykes from the Archean North Atlantic craton in present-day southern West and South-East Greenland. Two dykes in southern West Greenland yield crystallization ages of 2021 ± 4 Ma, for the NE-trending Hamborgersund dyke, and 2125 ± 9 Ma, for the E-trending Angissunguaq dyke. Additional age determinations of mafic dykes from South-East Greenland are 2166 ± 8 Ma and 2158 ± 8 Ma for two E–W trending dykes, herein named the Skjoldungen dykes, and 2137 ± 11 and 2124 ± 11 for two ENE and NE trending dykes, respectively. The name Ruinnæsset dykes is proposed for this slightly younger, ca. 2137–2124 Ma, generation of dykes in SE Greenland, and Nuuk dykes for coeval ca. 2125 Ma dykes in SW Greenland. The Skjoldungen and the Ruinnæsset dykes have primordial mantle geochemical signatures, with only minor LILE-enrichments. These signatures differ from other, more ‘lithospheric’ Proterozoic dykes within the region, and may reflect highly attenuated lithospheric extension during their emplacement. Coeval mafic magmatism in North Atlantic and Dharwar cratons suggests that these two fragments coexisted within a common Paleoproterozoic supercraton. A lack of younger age-matches further argue for ca. 2170–2140 Ma rifting and subsequent break-up of this Dharwar-North Atlantic connection, prior to the 2137–2124 Ma emplacement of the Ruinnæsset dykes. Other global age correlations are discussed and a likely paleogeographic reconstruction of North Atlantic craton together with the Dharwar and Superior cratons within a Paleoproterozoic supercraton is presented.

UR - http://www.scopus.com/inward/record.url?scp=85059347344&partnerID=8YFLogxK

U2 - 10.1016/j.precamres.2018.12.028

DO - 10.1016/j.precamres.2018.12.028

M3 - Article

VL - 329

SP - 70

EP - 87

JO - Precambrian Research

JF - Precambrian Research

SN - 0301-9268

ER -