TY - JOUR
T1 - BIF-hosted iron mineral system: A review
AU - Hagemann, Steffen
AU - Angerer, T.
AU - Duuring, Paul
AU - Rosière, C.A.
AU - Figueiredo E Silva, R.C.
AU - Lobato, L.
AU - Hensler, A.S.
AU - Walde, D.H.G.
PY - 2016/7/1
Y1 - 2016/7/1
N2 - © 2015The BIF-hosted iron ore system represents the world's largest and highest grade iron ore districts and deposits. BIF, the precursor to low- and high-grade BIF hosted iron ore, consists of Archean and Paleoproterozoic Algoma-type BIF (e.g., Serra Norte iron ore district in the Carajás Mineral Province), Proterozoic Lake Superior-type BIF (e.g., deposits in the Hamersley Province and craton), and Neoproterozoic Rapitan-type BIF (e.g., the Urucum iron ore district). The BIF-hosted iron ore system is structurally controlled, mostly via km-scale normal and strike-slips fault systems, which allow large volumes of ascending and descending hydrothermal fluids to circulate during Archean or Proterozoic deformation or early extensional events. Structures are also (passively) accessed via downward flowing supergene fluids during Cenozoic times. At the depositional site the transformation of BIF to low- and high-grade iron ore is controlled by: (1) structural permeability, (2) hypogene alteration caused by ascending deep fluids (largely magmatic or basinal brines), and descending ancient meteoric water, and (3) supergene enrichment via weathering processes. Hematite- and magnetite-based iron ores include a combination of microplaty hematite–martite, microplaty hematite with little or no goethite, martite–goethite, granoblastic hematite, specular hematite and magnetite, magnetite–martite, magnetite-specular hematite and magnetite–amphibole, respectively. Goethite ores with variable amounts of hematite and magnetite are mainly encountered in the weathering zone. In most large deposits, three major hypogene and one supergene ore stages are observed: (1) silica leaching and formation of magnetite and locally carbonate, (2) oxidation of magnetite to hematite (martitisation), further dissolution of quartz and formation of carbonate, (3) further martitisation, replacement of Fe silicates by hematite, new microplaty hematite and specular hematite formation and dissolution of carbonates, and (4) replacement of magnetite and any
AB - © 2015The BIF-hosted iron ore system represents the world's largest and highest grade iron ore districts and deposits. BIF, the precursor to low- and high-grade BIF hosted iron ore, consists of Archean and Paleoproterozoic Algoma-type BIF (e.g., Serra Norte iron ore district in the Carajás Mineral Province), Proterozoic Lake Superior-type BIF (e.g., deposits in the Hamersley Province and craton), and Neoproterozoic Rapitan-type BIF (e.g., the Urucum iron ore district). The BIF-hosted iron ore system is structurally controlled, mostly via km-scale normal and strike-slips fault systems, which allow large volumes of ascending and descending hydrothermal fluids to circulate during Archean or Proterozoic deformation or early extensional events. Structures are also (passively) accessed via downward flowing supergene fluids during Cenozoic times. At the depositional site the transformation of BIF to low- and high-grade iron ore is controlled by: (1) structural permeability, (2) hypogene alteration caused by ascending deep fluids (largely magmatic or basinal brines), and descending ancient meteoric water, and (3) supergene enrichment via weathering processes. Hematite- and magnetite-based iron ores include a combination of microplaty hematite–martite, microplaty hematite with little or no goethite, martite–goethite, granoblastic hematite, specular hematite and magnetite, magnetite–martite, magnetite-specular hematite and magnetite–amphibole, respectively. Goethite ores with variable amounts of hematite and magnetite are mainly encountered in the weathering zone. In most large deposits, three major hypogene and one supergene ore stages are observed: (1) silica leaching and formation of magnetite and locally carbonate, (2) oxidation of magnetite to hematite (martitisation), further dissolution of quartz and formation of carbonate, (3) further martitisation, replacement of Fe silicates by hematite, new microplaty hematite and specular hematite formation and dissolution of carbonates, and (4) replacement of magnetite and any
U2 - 10.1016/j.oregeorev.2015.11.004
DO - 10.1016/j.oregeorev.2015.11.004
M3 - Article
SN - 0169-1368
VL - 76
SP - 317
EP - 359
JO - Ore Geology Reviews
JF - Ore Geology Reviews
ER -