Better colonisation of newly emerged Bordetella pertussis in the co-infection mouse model study

A. Safarchi, S. Octavia, L.D.W. Luu, Chin Yen Tay, V. Sintchenko, N. Wood, H. Marshall, P. Mcintyre, R. Lan

Research output: Contribution to journalArticlepeer-review

27 Citations (Web of Science)

Abstract

© 2016 Elsevier Ltd
Molecular epidemiological data indicates that the resurgence of pertussis (whooping cough) in populations with high vaccine coverage is associated with genomic adaptation of Bordetella pertussis, the causative agent of the disease, to vaccine selection pressure. We have previously shown that in the period after the introduction of acellular pertussis vaccine (ACV), the majority of circulating strains in Australia switched to single nucleotide polymorphism (SNP) cluster I (carrying ptxP3/prn2), replacing SNP cluster II (carrying ptxP1/prn3). In this study, we carried out an in vivo competition assay using a mouse model infected with SNP cluster I and II B. pertussis strains from Australia. We found that the SNP cluster I strain colonised better than the SNP cluster II strain, in both naïve and immunised mice, suggesting that SNP cluster I strains had better fitness regardless of immunisation status of the host, consistent with SNP cluster I strains replacing SNP cluster II. Nevertheless, we found that ACV enhanced clearance of both SNP cluster I and II strains from the mouse respiratory tract.
Original languageEnglish
Pages (from-to)3967-3971
Number of pages5
JournalVaccine
Volume34
Issue number34
Early online date23 Jun 2016
DOIs
Publication statusPublished - 25 Jul 2016

Fingerprint

Dive into the research topics of 'Better colonisation of newly emerged Bordetella pertussis in the co-infection mouse model study'. Together they form a unique fingerprint.

Cite this