Benchmark Thermochemistry of the CnH2n+2 Alkane Isomers (n = 2—8) and Performance of DFT and Composite Ab Initio Methods for Dispersion-Driven Isomeric Equilibria

Amir Karton, D. Gruzman, J.M.L. Martin

Research output: Contribution to journalArticle

104 Citations (Scopus)

Abstract

The thermochemistry of linear and branched alkanes with up to eight carbons has been reexamined by means of W4, W3.2lite and W1h theories. “Quasi-W4” atomization energies have been obtained via isodesmic and hypohomodesmotic reactions. Our best atomization energies at 0 K (in kcal/mol) are 1220.04 for n-butane, 1497.01 for n-pentane, 1774.15 for n-hexane, 2051.17 for n-heptane, 2328.30 for n-octane, 1221.73 for isobutane, 1498.27 for isopentane, 1501.01 for neopentane, 1775.22 for isohexane, 1774.61 for 3-methylpentane, 1775.67 for diisopropyl, 1777.27 for neohexane, 2052.43 for isoheptane, 2054.41 for neoheptane, 2330.67 for isooctane, and 2330.81 for hexamethylethane. Our best estimates for ΔHf,298K° are −30.00 for n-butane, −34.84 for n-pentane, −39.84 for n-hexane, −44.74 for n-heptane, −49.71 for n-octane, −32.01 for isobutane, −36.49 for isopentane, −39.69 for neopentane, −41.42 for isohexane, −40.72 for 3-methylpentane, −42.08 for diisopropyl, −43.77 for neohexane, −46.43 for isoheptane, −48.84 for neoheptane, −53.29 for isooctane, and −53.68 for hexamethylethane. These are in excellent agreement (typically better than 1 kJ/mol) with the experimental heats of formation at 298 K obtained from the CCCBDB and/or NIST Chemistry WebBook databases. However, at 0 K, a large discrepancy between theory and experiment (1.1 kcal/mol) is observed for only neopentane. This deviation is mainly due to the erroneous heat content function for neopentane used in calculating the 0 K CCCBDB value. The thermochemistry of these systems, especially that of the larger alkanes, is an extremely difficult test for density functional methods. A posteriori corrections for dispersion are essential. Particularly for the atomization energies, the B2GP-PLYP and B2K-PLYP double hybrids and the PW6B95 hybrid meta-GGA clearly outperform other DFT functionals.
Original languageEnglish
Pages (from-to)8434–8447
JournalJournal of Physical Chemistry A
Volume113
Issue number29
Early online date1 Jul 2009
DOIs
Publication statusPublished - 23 Jul 2009

Fingerprint

Dive into the research topics of 'Benchmark Thermochemistry of the C<sub>n</sub>H<sub>2n</sub>+<sub>2</sub> Alkane Isomers (<em>n = </em>2—8) and Performance of DFT and Composite Ab Initio Methods for Dispersion-Driven Isomeric Equilibria'. Together they form a unique fingerprint.

Cite this