Base metals recovery from waste printed circuit board leachate using biogenic hydrogen sulfide gas

Jonovan Van Yken, Naomi J. Boxall, Ka Yu Cheng, Aleksandar N. Nikoloski, Navid R. Moheimani, Anna H. Kaksonen

Research output: Contribution to journalArticlepeer-review

Abstract

Electronic waste, or e-waste, represents one of the rapidly expanding categories of waste worldwide. By 2019, the global production of e-waste had surged to 53.6 million tons. Due to its substantial metal content, e-waste holds significant financial value, estimated at US$57 billion globally in 2019, predominantly concentrated in printed circuit boards (PCBs). Previous studies have explored hydrometallurgy techniques to extract base metals from PCBs, but effectively recovering these solubilised metals remained a challenge. This research sought to assess metal recovery from PCB waste leachate by utilising hydrogen sulfide generated through a consortium of sulfate-reducing bacteria (SRB) in a fluidised bed reactor (FBR). Both lactate and glycerol were examined as potential organic electron donors for the sulfate reduction. With lactate (1 g L−1) as the electron donor, the FBR achieved an average sulfate reduction efficiency of 62%, with a hydrogen sulfide (H2S) production rate of 250 mg H2S-S L−1 d−1 and H2S-S concentration of 300 mg L−1 in the effluent. When glycerol was the organic electron donor, the average sulfate reduction efficiency was 49%, H2S production rate was 210 mg H2S-S L−1 d−1 and H2S-S concentration was 260 mg L−1. Desulfovibrio, Desulfococcus and Desulfomicrobium were the dominant sulfate reducers in the FBR. The resulting dissolved hydrogen sulfide was employed to recover metals from e-waste leach liquor. Utilising biogenic sulfide and NaOH, a notably high precipitation efficiency (>99%) was attained for aluminum, nickel, copper, and zinc. Additionally, iron, utilised in the e-waste leaching process, was also recovered with an efficiency exceeding 99%. The precipitation of metals occurred within a pH range from 1.5 to 8.5. Overall, this process facilitated the formation of valuable mixed-metal precipitates from waste PCB-derived leachate. These precipitates could undergo further purification or serve as raw material for subsequent processes.

Original languageEnglish
Article number106341
JournalHydrometallurgy
Volume228
DOIs
Publication statusPublished - Oct 2024

Fingerprint

Dive into the research topics of 'Base metals recovery from waste printed circuit board leachate using biogenic hydrogen sulfide gas'. Together they form a unique fingerprint.

Cite this