TY - JOUR
T1 - Bacterial mechanosensitive channels: Experiment and theory
AU - Corry, Ben
AU - Martinac, B.
PY - 2008
Y1 - 2008
N2 - Since their discovery in Escherichia coli some 20 years ago, studies of bacterial mechanosensitive (MS) ion channels have been at the forefront of the MS channel research field. Two major events greatly advanced the research on bacterial MS channels: (i) cloning of MscL and MscS, the MS channels of Large and Small conductance, and (ii) solving their 3D crystal structure. These events enabled further experimental studies employing EPR and FRET spectroscopy in addition to patch clamp and molecular biological techniques that have successfully been used in characterization of the structure and function of bacterial NIS channels. In parallel with the experimental studies computational modelling has been applied to elucidate the molecular dynamics of MscL and MscS, which has significantly contributed to our understanding of basic physical principles of the mechanosensory transduction in living organisms. (C) 2007 Elsevier B.V. All rights reserved.
AB - Since their discovery in Escherichia coli some 20 years ago, studies of bacterial mechanosensitive (MS) ion channels have been at the forefront of the MS channel research field. Two major events greatly advanced the research on bacterial MS channels: (i) cloning of MscL and MscS, the MS channels of Large and Small conductance, and (ii) solving their 3D crystal structure. These events enabled further experimental studies employing EPR and FRET spectroscopy in addition to patch clamp and molecular biological techniques that have successfully been used in characterization of the structure and function of bacterial NIS channels. In parallel with the experimental studies computational modelling has been applied to elucidate the molecular dynamics of MscL and MscS, which has significantly contributed to our understanding of basic physical principles of the mechanosensory transduction in living organisms. (C) 2007 Elsevier B.V. All rights reserved.
U2 - 10.1016/j.bbamem.2007.06.022
DO - 10.1016/j.bbamem.2007.06.022
M3 - Review article
VL - 1778
SP - 1859
EP - 1870
JO - Biochimica et Biophysica Acta - Biomembranes
JF - Biochimica et Biophysica Acta - Biomembranes
SN - 0005-2736
ER -