Autophagy modulates growth and development in the moss Physcomitrium patens

Georgina Pettinari, Juan Finello, Macarena Plaza Rojas, Franco Liberatore, Germán Robert, Santiago Otaiza-González, Pilar Velez, Martin Theumer, Patricia Agudelo-Romero, Alejandro Enet, Claudio González, Ramiro Lascano, Laura Saavedra

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Physcomitrium patens apical growing protonemal cells have the singularity that they continue to undergo cell divisions as the plant develops. This feature provides a valuable tool to study autophagy in the context of a multicellular apical growing tissue coupled to development. Herein, we showed that the core autophagy machinery is present in the moss P. patens, and characterized the 2D and 3D growth and development of atg5 and atg7 loss-of-function mutants under optimal and nutrient-deprived conditions. Our results showed that 2D growth of the different morphological and functional protonemata apical growing cells, chloronema and caulonema, is differentially modulated by this process. These differences depend on the protonema cell type and position along the protonemal filament, and growth condition. As a global plant response, the absence of autophagy favors the spread of the colony through protonemata growth at the expense of a reduction of the 3D growth, such as the buds and gametophore development, and thus the adult gametophytic and reproductive phases. Altogether this study provides valuable information suggesting that autophagy has roles during apical growth with differential responses within the cell types of the same tissue and contributes to life cycle progression and thus the growth and development of the 2D and 3D tissues of P. patens.

Original languageEnglish
Article number1052358
JournalFrontiers in Plant Science
Volume13
DOIs
Publication statusPublished - 19 Dec 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Autophagy modulates growth and development in the moss Physcomitrium patens'. Together they form a unique fingerprint.

Cite this