Attention in Convolutional LSTM for Gesture Recognition

Research output: Contribution to journalConference article

1 Citation (Scopus)

Abstract

Convolutional long short-term memory (LSTM) networks have been widely used for action/gesture recognition, and different attention mechanisms have also been embedded into the LSTM or the convolutional LSTM (ConvLSTM) networks. Based on the previous gesture recognition architectures which combine the three-dimensional convolution neural network (3DCNN) and ConvLSTM, this paper explores the effects of attention mechanism in ConvLSTM. Several variants of ConvLSTM are evaluated: (a) Removing the convolutional structures of the three gates in ConvLSTM, (b) Applying the attention mechanism on the input of ConvLSTM, (c) Reconstructing the input and (d) output gates respectively with the modified channel-wise attention mechanism. The evaluation results demonstrate that the spatial convolutions in the three gates scarcely contribute to the spatiotemporal feature fusion, and the attention mechanisms embedded into the input and output gates cannot improve the feature fusion. In other words, ConvLSTM mainly contributes to the temporal fusion along with the recurrent steps to learn the long-term spatiotemporal features, when taking as input the spatial or spatiotemporal features. On this basis, a new variant of LSTM is derived, in which the convolutional structures are only embedded into the input-to-state transition of LSTM. The code of the LSTM variants is publicly available.
Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Publication statusPublished - 1 Oct 2018

Fingerprint

Gesture recognition
Fusion reactions
Convolution
Long short-term memory
Neural networks

Cite this

@article{9f8b9daeb1f442068f3d5333fd9b43ff,
title = "Attention in Convolutional LSTM for Gesture Recognition",
abstract = "Convolutional long short-term memory (LSTM) networks have been widely used for action/gesture recognition, and different attention mechanisms have also been embedded into the LSTM or the convolutional LSTM (ConvLSTM) networks. Based on the previous gesture recognition architectures which combine the three-dimensional convolution neural network (3DCNN) and ConvLSTM, this paper explores the effects of attention mechanism in ConvLSTM. Several variants of ConvLSTM are evaluated: (a) Removing the convolutional structures of the three gates in ConvLSTM, (b) Applying the attention mechanism on the input of ConvLSTM, (c) Reconstructing the input and (d) output gates respectively with the modified channel-wise attention mechanism. The evaluation results demonstrate that the spatial convolutions in the three gates scarcely contribute to the spatiotemporal feature fusion, and the attention mechanisms embedded into the input and output gates cannot improve the feature fusion. In other words, ConvLSTM mainly contributes to the temporal fusion along with the recurrent steps to learn the long-term spatiotemporal features, when taking as input the spatial or spatiotemporal features. On this basis, a new variant of LSTM is derived, in which the convolutional structures are only embedded into the input-to-state transition of LSTM. The code of the LSTM variants is publicly available.",
author = "Syed Shah and Mohammed Bennamoun and Liang Zhang",
year = "2018",
month = "10",
day = "1",
language = "English",
journal = "Advances in Neural Information Processing Systems",
issn = "1049-5258",

}

Attention in Convolutional LSTM for Gesture Recognition. / Shah, Syed; Bennamoun, Mohammed; Zhang, Liang.

In: Advances in Neural Information Processing Systems, 01.10.2018.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Attention in Convolutional LSTM for Gesture Recognition

AU - Shah, Syed

AU - Bennamoun, Mohammed

AU - Zhang, Liang

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Convolutional long short-term memory (LSTM) networks have been widely used for action/gesture recognition, and different attention mechanisms have also been embedded into the LSTM or the convolutional LSTM (ConvLSTM) networks. Based on the previous gesture recognition architectures which combine the three-dimensional convolution neural network (3DCNN) and ConvLSTM, this paper explores the effects of attention mechanism in ConvLSTM. Several variants of ConvLSTM are evaluated: (a) Removing the convolutional structures of the three gates in ConvLSTM, (b) Applying the attention mechanism on the input of ConvLSTM, (c) Reconstructing the input and (d) output gates respectively with the modified channel-wise attention mechanism. The evaluation results demonstrate that the spatial convolutions in the three gates scarcely contribute to the spatiotemporal feature fusion, and the attention mechanisms embedded into the input and output gates cannot improve the feature fusion. In other words, ConvLSTM mainly contributes to the temporal fusion along with the recurrent steps to learn the long-term spatiotemporal features, when taking as input the spatial or spatiotemporal features. On this basis, a new variant of LSTM is derived, in which the convolutional structures are only embedded into the input-to-state transition of LSTM. The code of the LSTM variants is publicly available.

AB - Convolutional long short-term memory (LSTM) networks have been widely used for action/gesture recognition, and different attention mechanisms have also been embedded into the LSTM or the convolutional LSTM (ConvLSTM) networks. Based on the previous gesture recognition architectures which combine the three-dimensional convolution neural network (3DCNN) and ConvLSTM, this paper explores the effects of attention mechanism in ConvLSTM. Several variants of ConvLSTM are evaluated: (a) Removing the convolutional structures of the three gates in ConvLSTM, (b) Applying the attention mechanism on the input of ConvLSTM, (c) Reconstructing the input and (d) output gates respectively with the modified channel-wise attention mechanism. The evaluation results demonstrate that the spatial convolutions in the three gates scarcely contribute to the spatiotemporal feature fusion, and the attention mechanisms embedded into the input and output gates cannot improve the feature fusion. In other words, ConvLSTM mainly contributes to the temporal fusion along with the recurrent steps to learn the long-term spatiotemporal features, when taking as input the spatial or spatiotemporal features. On this basis, a new variant of LSTM is derived, in which the convolutional structures are only embedded into the input-to-state transition of LSTM. The code of the LSTM variants is publicly available.

UR - http://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018

M3 - Conference article

JO - Advances in Neural Information Processing Systems

JF - Advances in Neural Information Processing Systems

SN - 1049-5258

ER -