Asymptotic phenomena in pressurized thin films

C.D. Coman, Miccal Matthews, Andrew Bassom

    Research output: Contribution to journalArticlepeer-review

    14 Citations (Scopus)

    Abstract

    © 2015 The Author(s) Published by the Royal Society. All rights reserved. An asymptotic study of the wrinkling of a pressurized circular thin film is performed. The corresponding boundary-value problem is described by two nondimensional parameters; a background tension ì and the applied loading P. Previous numerical studies of the same configuration have shown that P tends to be large, and this fact is exploited here in the derivation of asymptotic descriptions of the elastic bifurcation phenomena. Two limiting cases are considered; in the first, the background tension is modest, while the second deals with the situation when it is large. In both instances, it is shown how the wrinkling is confined to a relatively narrow zone near the rim of the thin film, but the mechanisms driving the bifurcation are different. In the first scenario, the wrinkles are confined to a region which, though close to the rim, is asymptotically separate from it. By contrast, when ì is larger, the wrinkling is within a zone that is attached to the rim. Predictions are made for the value of the applied loading P necessary to generate wrinkling, as well as details of the corresponding wrinkling pattern, and these asymptotic results are compared to some direct numerical simulations of the original boundary-value problem.
    Original languageEnglish
    Pages (from-to)1-19
    JournalProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
    Volume471
    Issue number2182
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    Dive into the research topics of 'Asymptotic phenomena in pressurized thin films'. Together they form a unique fingerprint.

    Cite this