### Abstract

[Truncated abstract. Please see the pdf version for the complete text. Also, formulae and special characters can only be approximated here. Please see the pdf version of this abstract for an accurate reproduction.] This thesis treats two aspects of intelligent control: The first part is about long-term optimization by approximating dynamic programming and in the second part a specific class of a fast neural network, related to support vector machines (SVMs), is considered. The first part relates to approximate dynamic programming, especially in the framework of adaptive critic designs (ACDs). Dynamic programming can be used to find an optimal decision or control policy over a long-term period. However, in practice it is difficult, and often impossible, to calculate a dynamic programming solution, due to the 'curse of dimensionality'. The adaptive critic design framework addresses this issue and tries to find a good solution by approximating the dynamic programming process for a stationary environment. In an adaptive critic design there are three modules, the plant or environment to be controlled, a critic to estimate the long-term cost and an action or controller module to produce the decision or control strategy. Even though there have been many publications on the subject over the past two decades, there are some points that have had less attention. While most of the publications address the training of the critic, one of the points that has not received systematic attention is training of the action module.¹ Normally, training starts with an arbitrary, hopefully stable, decision policy and its long-term cost is then estimated by the critic. Often the critic is a neural network that has to be trained, using a temporal difference and Bellman's principle of optimality. Once the critic network has converged, a policy improvement step is carried out by gradient descent to adjust the parameters of the controller network. Then the critic is retrained again to give the new long-term cost estimate. However, it would be preferable to focus more on extremal policies earlier in the training. Therefore, the Calculus of Variations is investigated to discard the idea of using the Euler equations to train the actor. However, an adaptive critic formulation for a continuous plant with a short-term cost as an integral cost density is made and the chain rule is applied to calculate the total derivative of the short-term cost with respect to the actor weights. This is different from the discrete systems, usually used in adaptive critics, which are used in conjunction with total ordered derivatives. This idea is then extended to second order derivatives such that Newton's method can be applied to speed up convergence. Based on this, an almost concurrent actor and critic training was proposed. The equations are developed for any non-linear system and short-term cost density function and these were tested on a linear quadratic regulator (LQR) setup. With this approach the solution to the actor and critic weights can be achieved in only a few actor-critic training cycles. Some other, more minor issues, in the adaptive critic framework are investigated, such as the influence of the discounting factor in the Bellman equation on total ordered derivatives, the target interpretation in backpropagation through time as moving and fixed targets, the relation between simultaneous recurrent networks and dynamic programming is stated and a reinterpretation of the recurrent generalized multilayer perceptron (GMLP) as a recurrent generalized finite impulse MLP (GFIR-MLP) is made. Another subject in this area that is investigated, is that of a hybrid dynamical system, characterized as a continuous plant and a set of basic feedback controllers, which are used to control the plant by finding a switching sequence to select one basic controller at a time. The special but important case is considered when the plant is linear but with some uncertainty in

Original language | English |
---|---|

Qualification | Doctor of Philosophy |

Publication status | Unpublished - 2003 |