Application of PFG-NMR to Study the Impact of Colloidal Deposition on Hydrodynamic Dispersion in a Porous Medium

Einar Fridjonsson, S.L. Codd, J.D. Seymour

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Colloidal particulate deposition affects the performance of industrial equipment, reverse osmosis membranes and sub-surface contaminant transport. Nuclear magnetic resonance (NMR) techniques, i.e. diffusion, diffraction and velocity imaging, are used to study the effect deposited colloidal particulate have on the fluid dynamics of water inside a model porous medium. Specially prepared oil-filled hard-sphere particles allow monitoring of particulate accumulation via NMR spectroscopy. Evidence of preferential spatial deposition is observed after the initial colloidal particulate deposition. Loss of spatial homogeneity is observed through NMR diffraction, while observations of the probability distributions of displacement (propagators) indicate the formation of back-bone type flow. This paper presents unique dynamic NMR data for the non-invasive non-destructive investigation of fluid transport in opaque porous media experiencing colloidal deposition. © 2014 Springer Science+Business Media Dordrecht.
Original languageEnglish
Pages (from-to)117-130
JournalTransport in Porous Media
Volume103
Issue number1
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Application of PFG-NMR to Study the Impact of Colloidal Deposition on Hydrodynamic Dispersion in a Porous Medium'. Together they form a unique fingerprint.

Cite this