Abstract
Automatic speaker verification (ASV) is the process of verifying a claimed speaker identity from a voice signal based on speaker-specific characteristics. However, it has been widely acknowledged that a generic ASV system may be attacked. Urgent demands for anti-spoofing countermeasures are suggested by numerous vulnerability studies. The main focus of this thesis is to propose high-performing anti-spoofing solutions designed from various perspectives in spoofing detection. This work contributes to generate insights of applying state-of-the-art approaches for developing efficient anti-spoofing systems. The thesis deals with the problems of feature optimization and system generalization, insufficient and imbalanced training data and integrated spoofing robust ASV systems.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Thesis sponsors | |
Award date | 9 Apr 2020 |
DOIs | |
Publication status | Unpublished - 2019 |