Analytical and Experimental Studies of Drag Embedment Anchors and Suction Caissons

Ryan Beemer

Research output: ThesisNon-UWA Thesis

Abstract

The need for experimental and analytical modeling in the field of deep water offshore anchoring technologies is high. Suction caisson and drag embedment anchors (DEA) are common anchors used for mooring structures in deep water. The installation process of drag embedment anchors has been highly empirical, employing a trial and error methodology. In the past decade analytical methods have been derived for modeling DEA installation trajectories. However, obtaining calibration data for these models has not been economical. The development of a small scale experimental apparatus, known as the Laponite Tank, was developed for this thesis. The Laponite Tank provides a quick and economical means of measuring DEA trajectories, visually. The experimental data can then be used for calibrating models. The installation process of suctions caissons has benefited from from a more rational approach. Nevertheless, these methods require refinement and removal methodology requires development. In this thesis, an algorithm for modeling suction caisson installation in clay has been presented. An analytical method and modeling algorithm for removal processes of suction caissons in clay was also developed. The installation and removal models were calibrated to field data. These analytical and experimental studies can provide a better understanding of installation of drag embedment anchors and the installation and removal of suction caissons.
Original languageEnglish
QualificationMasters
Awarding Institution
  • Texas A and M University
Supervisors/Advisors
  • Aubeny, Charles, Supervisor, External person
Publication statusUnpublished - 8 Aug 2011

Fingerprint

caisson
anchor
suction
drag
experimental study
modeling
analytical method
deep water
trajectory
experimental apparatus
clay
methodology
calibration
removal

Cite this

@phdthesis{7d44735c30ad4652ac7c0838f6ab876c,
title = "Analytical and Experimental Studies of Drag Embedment Anchors and Suction Caissons",
abstract = "The need for experimental and analytical modeling in the field of deep water offshore anchoring technologies is high. Suction caisson and drag embedment anchors (DEA) are common anchors used for mooring structures in deep water. The installation process of drag embedment anchors has been highly empirical, employing a trial and error methodology. In the past decade analytical methods have been derived for modeling DEA installation trajectories. However, obtaining calibration data for these models has not been economical. The development of a small scale experimental apparatus, known as the Laponite Tank, was developed for this thesis. The Laponite Tank provides a quick and economical means of measuring DEA trajectories, visually. The experimental data can then be used for calibrating models. The installation process of suctions caissons has benefited from from a more rational approach. Nevertheless, these methods require refinement and removal methodology requires development. In this thesis, an algorithm for modeling suction caisson installation in clay has been presented. An analytical method and modeling algorithm for removal processes of suction caissons in clay was also developed. The installation and removal models were calibrated to field data. These analytical and experimental studies can provide a better understanding of installation of drag embedment anchors and the installation and removal of suction caissons.",
keywords = "DEA, Drag Embedment Anchors, Caissons, Translucent Soil",
author = "Ryan Beemer",
year = "2011",
month = "8",
day = "8",
language = "English",
school = "Texas A and M University",

}

Analytical and Experimental Studies of Drag Embedment Anchors and Suction Caissons. / Beemer, Ryan.

2011.

Research output: ThesisNon-UWA Thesis

TY - THES

T1 - Analytical and Experimental Studies of Drag Embedment Anchors and Suction Caissons

AU - Beemer, Ryan

PY - 2011/8/8

Y1 - 2011/8/8

N2 - The need for experimental and analytical modeling in the field of deep water offshore anchoring technologies is high. Suction caisson and drag embedment anchors (DEA) are common anchors used for mooring structures in deep water. The installation process of drag embedment anchors has been highly empirical, employing a trial and error methodology. In the past decade analytical methods have been derived for modeling DEA installation trajectories. However, obtaining calibration data for these models has not been economical. The development of a small scale experimental apparatus, known as the Laponite Tank, was developed for this thesis. The Laponite Tank provides a quick and economical means of measuring DEA trajectories, visually. The experimental data can then be used for calibrating models. The installation process of suctions caissons has benefited from from a more rational approach. Nevertheless, these methods require refinement and removal methodology requires development. In this thesis, an algorithm for modeling suction caisson installation in clay has been presented. An analytical method and modeling algorithm for removal processes of suction caissons in clay was also developed. The installation and removal models were calibrated to field data. These analytical and experimental studies can provide a better understanding of installation of drag embedment anchors and the installation and removal of suction caissons.

AB - The need for experimental and analytical modeling in the field of deep water offshore anchoring technologies is high. Suction caisson and drag embedment anchors (DEA) are common anchors used for mooring structures in deep water. The installation process of drag embedment anchors has been highly empirical, employing a trial and error methodology. In the past decade analytical methods have been derived for modeling DEA installation trajectories. However, obtaining calibration data for these models has not been economical. The development of a small scale experimental apparatus, known as the Laponite Tank, was developed for this thesis. The Laponite Tank provides a quick and economical means of measuring DEA trajectories, visually. The experimental data can then be used for calibrating models. The installation process of suctions caissons has benefited from from a more rational approach. Nevertheless, these methods require refinement and removal methodology requires development. In this thesis, an algorithm for modeling suction caisson installation in clay has been presented. An analytical method and modeling algorithm for removal processes of suction caissons in clay was also developed. The installation and removal models were calibrated to field data. These analytical and experimental studies can provide a better understanding of installation of drag embedment anchors and the installation and removal of suction caissons.

KW - DEA

KW - Drag Embedment Anchors

KW - Caissons

KW - Translucent Soil

M3 - Non-UWA Thesis

ER -