Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter

B.T. Vo, Ba-Ngu Vo, Antonio Cantoni

    Research output: Contribution to journalArticlepeer-review

    739 Citations (Scopus)


    The probability hypothesis density (PHD) recursion propagates the posterior intensity of the random finite set (RFS) of targets in time. The cardinalized PHD (CPHD) recursion is a generalization of the PHD recursion, which jointly propagates the posterior intensity and the posterior cardinality distribution. In general, the CPHD recursion is computationally intractable. This paper proposes a closed-form solution to the CPHD recursion under linear Gaussian assumptions on the target dynamics and birth process. Based on this solution, an effective multitarget tracking algorithm is developed. Extensions of the propose closed-form recursion to accommodate nonlinear models are also given using linearization and unscented transform techniques. The proposed CPHD implementations not only sidestep the need to perform data association found in traditional methods, but also dramatically improve the accuracy of individual state estimates as well as the variance of the estimated number of targets when compared to the standard PHD filter. Our implementations only have a cubic complexity, but simulations suggest favorable performance compared to the standard Joint Probabilistic Data Association (JPDA) filter which has a nonpolynomial complexity.
    Original languageEnglish
    Pages (from-to)3553 - 3567
    JournalIEEE Transactions on Signal Processing
    Issue number7
    Publication statusPublished - 2007


    Dive into the research topics of 'Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter'. Together they form a unique fingerprint.

    Cite this