Abstract
This contribution focuses on the simulation of two-dimensional elastic wave propagation in functionally graded solids and structures. Gradient volume fractions of the constituent materials are assumed to obey the power law function of position in only one direction and the effective mechanical properties of the material are determined by the Mori-Tanaka scheme. The investigations are carried out by extending a meshless method known as the Mesh less Local Petrov-Galerkin (MLPG) method which is a truly meshless approach to thermo-elastic wave propagation. Simulations are carried out for rectangular domains under transient thermal loading. To investigate the effect of material composition on the dynamic response of functionally graded materials, a metal/ceramic (Aluminum (Al) and Alumina (Al(2)O(3)) are considered as ceramic and metal constituents) composite is considered for which the transient thermal field, dynamic displacement and stress fields are reported for different material distributions.
Original language | English |
---|---|
Pages (from-to) | 27-74 |
Number of pages | 48 |
Journal | CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES |
Volume | 65 |
Issue number | 1 |
DOIs | |
Publication status | Published - Aug 2010 |
Externally published | Yes |