Analysis of sensitivity in quantitative micro-elastography

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Quantitative micro-elastography (QME), a variant of compression optical coherence elastography (OCE), is a technique to image tissue elasticity on the microscale. QME has been proposed for a range of applications, most notably tumor margin assessment in breast-conserving surgery. However, QME sensitivity, a key imaging metric, has yet to be systematically analyzed. Consequently, it is difficult to optimize imaging performance and to assess the potential of QME in new application areas. To address this, we present a framework for analyzing sensitivity that incorporates the three main steps in QME image formation: mechanical deformation, its detection using optical coherence tomography (OCT), and signal processing used to estimate elasticity. Firstly, we present an analytical model of QME sensitivity, validated by experimental data, and demonstrate that sub-kPa elasticity sensitivity can be achieved in QME. Using silicone phantoms, we demonstrate that sensitivity is dependent on friction, OCT focus depth, and averaging methods in signal processing. For the first time, we show that whilst lubrication of layer improves accuracy by reducing surface friction, it reduces sensitivity due to the time-dependent effect of lubricant exudation from the layer boundaries resulting in increased friction. Furthermore, we demonstrate how signal processing in QME provides a trade-off between sensitivity and resolution that can be used to optimize imaging performance. We believe that our framework to analyze sensitivity can help to sustain the development of QME and, also, that it can be readily adapted to other OCE techniques.

Original languageEnglish
Pages (from-to)1725-1745
Number of pages21
JournalBiomedical Optics Express
Volume12
Issue number3
DOIs
Publication statusPublished - 2021

Fingerprint

Dive into the research topics of 'Analysis of sensitivity in quantitative micro-elastography'. Together they form a unique fingerprint.

Cite this