@inbook{c158664a32e448068452943b1755fd5a,
title = "An Overview of Multiple Classifier Systems Based on Generalized Additive Models",
abstract = "Multiple classifier systems combine the decisions from individual classifiers to obtain a more accurate classifier. Multiple classifier systems are also known as ensemble methods, committee of classifiers, and mixture of experts. Three popular ways of creating the individual classifiers for multiple classifiers systems are bagging, random subspace modeling, and boosting. This chapter reviews the GAMens family of multiple classifier systems that use general additive models as a base classifier. It shows that generalized additive model (GAM)‐based multiple classifiers serve as a good extension to the ensemble‐based literature because they are stronger predictors than a single GAM‐based classifier. The chapter introduces the theory behind GAMens classifiers, and then looks at real‐world applications and how GAM‐based multiple classifier systems compare to other popular algorithms. The GAMensPlus algorithm combines the training and prediction phases of GAMens with an explanation phase in which two heuristics are introduced to allow model interpretation.",
author = "Bock, {K.W. De} and K. Coussement and Davy Cielen",
year = "2018",
month = aug,
day = "24",
doi = "10.1002/9781119421566.ch11",
language = "English",
isbn = "9781119421092",
series = "Ensemble Classification Methods with Applicationsin R",
publisher = "John Wiley & Sons",
pages = "175--186",
editor = "Esteban Alfaro and Mat{\'i}as G{\'a}mez and Noelia Garc{\'i}a",
booktitle = "Ensemble Classification Methods with Applications in R",
address = "United States",
}