Abstract
BACKGROUNDOrganic chemistry is often challenging for students due to the use of mechanism in reaction problems. Students lack deeper understanding of key concepts and will instead rote memorize specific mechanisms often leading to failure when presented with new mechanisms or when they cannot recall information (Bhattacharyya and Bodner, 2005, Kraft, Strickland and Bhattacharyya, 2010).AIMSThe aim of this study was to investigate the different strategies students’ use at different year levels to answer the same electrophilic aromatic substitution mechanism question.DESIGN AND METHODSAn electrophilic aromatic substitution type question with the acylium ion was presented to level 1, 2 and 3 students enrolled in chemistry units that had all completed first year organic chemistry. Data for level 2 and 3 students was collected mid-way through the semester and data for level 1 students was collected at the end of semester following the organic chemistry lectures. A diagnostic test on the resonance of the acylium ion was administered directly after answering the question on electrophilic aromatic substitution. Some students also participated in semi-structured interviews using the think aloud protocol to understand their thought process when answering the question. Data was analysed by marking the electrophilic aromatic substitution question, generating a mean confidence quotient from diagnostic tests and coding interviews.RESULTSStudents at lower levels were less successful when attempting mechanism questions than those in upper levels who have more experience and a better understanding of the concepts and chemical reasoning behind each step. Students who understood the resonance structure of the acylium ion and incorporated it in their answers were able to answer the question correctly. Those answers absent of deeper level chemistry knowledge and relying on surface levels of understanding find difficulty to answer the question correctly. Level 2 students were largely unable to answer the question correctly due to the timing in which the question was administered. This indicates students in second year are still not developing deeper understanding of the chemistry behind a mechanism.CONCLUSIONSOverall students at lower levels find difficulty in answering mechanism questions. To improve their performance, they must develop proficiency in understanding the key chemistry concepts that allow them to answer mechanism questions, rather than simply relying on rote learning.REFERENCESBhattacharyya, G., & Bodner, G. M. (2005). " It gets me to the product": How students propose organic mechanisms. Journal of Chemical Education, 82(9), 1402-1407.Kraft, A., Strickland, A. M., & Bhattacharyya, G. (2010). Reasonable reasoning: multi-variate problem-solving in organic chemistry. Chemistry Education Research and Practice, 11(4), 281-292.
Original language | English |
---|---|
Pages | 123 |
Number of pages | 1 |
Publication status | Published - 2017 |
Event | Australian Conference on Science and Mathematics Education: Science And Mathematics Teaching And Learning For The 21st Century - Monash University, Clayton, Australia Duration: 27 Sept 2017 → 29 Sept 2017 Conference number: 23rd http://www.acds-tlcc.edu.au/wp-content/uploads/sites/14/2017/09/2017-ACSME-proceedings.pdf |
Conference
Conference | Australian Conference on Science and Mathematics Education |
---|---|
Abbreviated title | ACSME 2018 |
Country/Territory | Australia |
City | Clayton |
Period | 27/09/17 → 29/09/17 |
Internet address |