Projects per year
Abstract
In this paper, we develop a meshless collocation scheme for the numerical solution of magnetohydrodynamics (MHD) flow equations. We consider the transient laminar flow of an incompressible, viscous and electrically conducting fluid in a rectangular duct. The flow is driven by the current produced by electrodes placed on the walls of the duct. The method combines a meshless collocation scheme with the newly developed Discretization Corrected Particle Strength Exchange (DC PSE) interpolation method. To highlight the applicability of the method, we discretize the spatial domain by using uniformly (Cartesian) and irregularly distributed nodes. The proposed solution method can handle high Hartmann (Ha) numbers and captures the boundary layers formed in such cases, without the presence of unwanted oscillations, by employing a local mesh refinement procedure close to the boundaries. The use of local refinement reduces the computational cost. We apply an explicit time integration scheme and we compute the critical time step that ensures stability through the Gershgorin theorem. Finally, we present numerical results obtained using different orientation of the applied magnetic field. (C) 2018 Elsevier Inc. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 215-233 |
Number of pages | 19 |
Journal | Applied Mathematics and Computation |
Volume | 348 |
Early online date | 10 Dec 2018 |
DOIs | |
Publication status | Published - 1 May 2019 |
Fingerprint
Dive into the research topics of 'An explicit meshless point collocation method for electrically driven magnetohydrodynamics (MHD) flow'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Biomechanics Meets Robotics: Methods for Accurate and Fast Needle Targeting
Wittek, A. (Investigator 01), Singh, S. (Investigator 02), Miller, K. (Investigator 03), Hannaford, B. (Investigator 04) & Fichtinger, G. (Investigator 05)
ARC Australian Research Council
1/01/16 → 31/03/22
Project: Research